分析 (1)由正弦定理及三角函數(shù)恒等變換化簡(jiǎn)已知等式可得sin(C-$\frac{π}{6}$)=$\frac{1}{2}$,又結(jié)合C∈(0,π),即可求得角C的值;
(2)由余弦定理結(jié)合已知可得$\frac{ab}{2}$≤4,又由三角形面積公式可得S△ABC=$\frac{1}{2}$ab•sinC=2$\sqrt{3}$.從而解得△ABC面積的最大值.
解答 解:(1)由正弦定理可得:sinA+sinB=$\sqrt{3}$sinCsinA+sinCcosA,又A+B+C=π,
∴sinA+sin(A+C)=$\sqrt{3}$sinCsinA+sinCcosA
整理可得:1+cosC=$\sqrt{3}$sinC,
即:$\sqrt{3}$sinC-cosC=1,
有:sin(C-$\frac{π}{6}$)=$\frac{1}{2}$,
又C∈(0,π),
∴C-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),
∴C-$\frac{π}{6}$=$\frac{π}{6}$,
∴C=$\frac{π}{3}$.
(2)如圖,由余弦定理可得:AD2=CA2+CD2-2CA•CD•cosC=CA2+CD2-CA•CD=b2+$\frac{{a}^{2}}{4}$-$\frac{ab}{2}$≥ab$-\frac{ab}{2}$=$\frac{ab}{2}$,
∴$\frac{ab}{2}$≤4,
又S△ABC=$\frac{1}{2}$ab•sinC=2$\sqrt{3}$.
∴△ABC面積的最大值是2$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形面積公式的應(yīng)用,利用基本不等式求面積的最大值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com