欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.設(shè)橢圓C1:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1與拋物線C2:y2=8x的一個交點(diǎn)坐標(biāo)為(x0,y0),直線y=m(0<m<|y0|)與函數(shù)f(x)=$\left\{\begin{array}{l}{2\sqrt{2x}(0<x<{x}_{0})}\\{\frac{\sqrt{3}}{2}\sqrt{16-{x}^{2}}(4>x>{x}_{0})}\end{array}\right.$的圖象交于A、B兩點(diǎn),其坐標(biāo)分別為(xA,yA),(xB,yB),且xA<xB,點(diǎn)N為拋物線的焦點(diǎn),求△ABN的周長的取值范圍.

分析 可考慮用拋物線的焦半徑公式和橢圓的焦半徑公式來做,先通過聯(lián)立拋物線與橢圓方程,求出交點(diǎn)坐標(biāo),可得A,B點(diǎn)的橫坐標(biāo)范圍,再利用焦半徑公式轉(zhuǎn)換為以B點(diǎn)的橫坐標(biāo)為參數(shù)的式子,再根據(jù)前面求出的B點(diǎn)橫坐標(biāo)范圍計(jì)算即可.

解答 解:由橢圓方程和拋物線方程聯(lián)立,
解得x0=$\frac{4}{3}$,y0=±$\sqrt{\frac{32}{3}}$,
即有f(x)=$\left\{\begin{array}{l}{2\sqrt{2x},0<x<\frac{4}{3}}\\{\frac{\sqrt{3}}{2}\sqrt{16-{x}^{2}},\frac{4}{3}<x<4}\end{array}\right.$,
直線y=m(0<m<$\sqrt{\frac{32}{3}}$),
作出函數(shù)y=f(x)和直線y=m的圖象,
由圖象可得A在拋物線上,B在橢圓上,
由焦半徑公式可得,△ABN的周長為
|AN|+|BN|+|AB|=xA+$\frac{p}{2}$+a-exB+xB-xA
=2+4-$\frac{1}{2}$xB+xB=6+$\frac{1}{2}$xB,
由xB∈($\frac{4}{3}$,4),
可得6+$\frac{1}{2}$xB∈($\frac{20}{3}$,8).
故△ABN的周長的取值范圍是($\frac{20}{3}$,8).

點(diǎn)評 本題考查了拋物線與橢圓焦半徑公式的應(yīng)用,做題時(shí)要善于把未知轉(zhuǎn)化為已知,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用一個平面去截正四面體,使它成為形狀,大小都相同的兩個幾何體,則這樣的平面的個數(shù)有( 。
A.6個B.7個C.10個D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)f(x)=nn+1,g(n)=(n+1)n,(n∈N*
(Ⅰ)判斷f(n)與g(n)的大小,并證明你的結(jié)論;
(Ⅱ)若an=$\frac{1}{g(n)}$,bn=2n-1,證明:a1b1+a2b2+…+anbn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=$\sqrt{2}$,點(diǎn)E在棱PD上,且PE:ED=2:1.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角P-AE-C的余弦值;
(Ⅲ)在棱PC上是否存在點(diǎn)F,使得BF∥平面AEC?若存在,確定點(diǎn)F的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{4}$+y2=1
(1)若直線y=kx+2橢圓有兩個交點(diǎn),求出k的取值范圍;
(2)經(jīng)過橢圓左頂點(diǎn)A的直線交橢圓另一點(diǎn)B,線段AB的垂直平分線上的一點(diǎn)P滿足$\overrightarrow{PA}$•$\overrightarrow{PB}$=4,若P點(diǎn)在y軸上,求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的左右焦點(diǎn)分別為F1(-1,0)、F2(1,0),且過點(diǎn)E(-$\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$),過原點(diǎn)O且斜率為k(k≠0)的直線l與橢圓C交于P、Q兩點(diǎn),A、B為橢圓的左、右頂點(diǎn),直線AP、AQ分別與橢圓的右準(zhǔn)線交于M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)證明:直線PA與直線PB的斜率之積是定值;
(3)證明:以MN為直徑的圓經(jīng)過橢圓內(nèi)的一個定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓的C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率為$\frac{1}{2}$,長軸長為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線l過點(diǎn)D(4,0)與橢圓C交于A、B兩點(diǎn).
①求△AOB面積的最大值(O為坐標(biāo)原點(diǎn))并求取最大值時(shí)直線l的方程;
②若E為橢圓C的左頂點(diǎn),M(1,0),試問∠AMD=∠BME是否一定成立?如果成立請給出證明否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1.
(1)求證BD1⊥AC;
(2)求直線A1B與平面BB1D1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知橢圓C:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1的右焦點(diǎn)為F,定點(diǎn)A(4,1),P是橢圓C上的動點(diǎn),則|PA|+|PF|的取值范圍是( 。
A.[10-$\sqrt{65}$,10+$\sqrt{65}$]B.[2,18]C.[$\frac{13}{5}$,9+$\sqrt{82}$]D.[10-$\sqrt{65}$,10]

查看答案和解析>>

同步練習(xí)冊答案