| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{4}$ |
分析 設出A,B的坐標,聯(lián)立直線方程與橢圓方程,利用根與系數(shù)的關系結合中點坐標公式求出kOM,再由直線AB斜率與OM斜率之積為-$\frac{1}{4}$求得答案.
解答 解:設A、B兩點的坐標分別為A(x1,y1),B(x2,y2),
聯(lián)立$\left\{\begin{array}{l}{x+2y=1}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1}\end{array}\right.$,得(a2+4b2)x2-2a2x+a2-4a2b=0.
∴${x}_{1}+{x}_{2}=\frac{2{a}^{2}}{{a}^{2}+4^{2}}$,${y}_{1}+{y}_{2}=\frac{1}{2}(1-{x}_{1})+\frac{1}{2}(1-{x}_{2})$=$1-\frac{1}{2}({x}_{1}+{x}_{2})$=$1-\frac{{a}^{2}}{{a}^{2}+4^{2}}=\frac{4^{2}}{{a}^{2}+4^{2}}$,
∴${k}_{OM}=\frac{2^{2}}{{a}^{2}}$,又${k}_{AB}=-\frac{1}{2}$,
∴$\frac{2^{2}}{{a}^{2}}•(-\frac{1}{2})=-\frac{1}{4}$,解得:e=$\frac{1}{2}$.
故選:A.
點評 本題考查橢圓的簡單性質,考查直線與橢圓的位置關系的應用,考查計算能力,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ($\sqrt{2k}$,0),(-$\sqrt{2k}$,0) | B. | (0,$\sqrt{-2k}$),(0,$-\sqrt{2k}$) | C. | ($\sqrt{2|k|}$,0),(-$\sqrt{2|k|}$,0) | D. | 根據(jù)k的取值而定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | f(x)=$\frac{1}{x+2}$ | B. | f(x)=-(x+1)2 | C. | f(x)=1+2x2 | D. | f(x)=-|x| |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com