欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.在平面直角坐標(biāo)系中,把橫、縱坐標(biāo)均為有理數(shù)的點(diǎn)稱為有理點(diǎn).若a為無(wú)理數(shù),則在過(guò)點(diǎn)P(a,-$\frac{1}{2}$)的所有直線中( 。
A.有無(wú)窮多條直線,每條直線上至少存在兩個(gè)有理點(diǎn)
B.恰有n(n≥2)條直線,每條直線上至少存在兩個(gè)有理點(diǎn)
C.有且僅有一條直線至少過(guò)兩個(gè)有理點(diǎn)
D.每條直線至多過(guò)一個(gè)有理點(diǎn)

分析 根據(jù)題意,假設(shè)一條直線上存在兩個(gè)有理點(diǎn),由此推斷滿足條件的直線有多少即可.

解答 解:設(shè)一條直線上存在兩個(gè)有理點(diǎn)A(x1,y1),B(x2,y2),
由于$P(a,-\frac{1}{2})$也在此直線上,
所以,當(dāng)x1=x2時(shí),有x1=x2=a為無(wú)理數(shù),與假設(shè)矛盾,此時(shí)該直線不存在有理點(diǎn);
當(dāng)x1≠x2時(shí),直線的斜率存在,且有$\frac{{{y_2}-{y_1}}}{{{x_2}-{x_1}}}=\frac{{{y_2}+\frac{1}{2}}}{{{x_2}-a}}$,
又x2-a為無(wú)理數(shù),而$\frac{{{y_2}-{y_1}}}{{{x_2}-{x_1}}}$為有理數(shù),
所以只能是${y_2}+\frac{1}{2}=0$,且y2-y1=0,
即${y_2}={y_1}=-\frac{1}{2}$;
所以滿足條件的直線只有一條,且直線方程是$y=-\frac{1}{2}$;
所以,正確的選項(xiàng)為C.
故選:C.

點(diǎn)評(píng) 本題考查了新定義的關(guān)于直線方程與直線斜率的應(yīng)用問(wèn)題,解題的關(guān)鍵是理解新定義的內(nèi)容,尋找解題的途徑,是難理解的題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=90°,AB=BC=2AD=4,M是BC邊的中點(diǎn),E,F(xiàn)分別是AB,CD上的點(diǎn),且EF∥BC,設(shè)AE=x.如圖,沿EF將四邊形AEFD折起,使平面AEFD⊥平面EBCF.
(1)當(dāng)x=2時(shí),求證:BD⊥EM;
(2)當(dāng)x變化時(shí),求四棱錐D-BCEF的體積f(x)的函數(shù)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積為36$\sqrt{3}$(π+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b3=9,a5+b5=25.
(Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列$\{\frac{a_n}{b_n}\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,若a=1,b=2,則輸出的結(jié)果是( 。
A.9B.11C.13D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.甲、乙兩支籃球隊(duì)賽季總決賽采用7場(chǎng)4勝制,每場(chǎng)必須分出勝負(fù),場(chǎng)與場(chǎng)之間互不影響,只要有一隊(duì)獲勝4場(chǎng)就結(jié)束比賽.現(xiàn)已比賽了4場(chǎng),且甲籃球隊(duì)勝3場(chǎng).已知甲球隊(duì)第5,6場(chǎng)獲勝的概率均為$\frac{3}{5}$,但由于體力原因,第7場(chǎng)獲勝的概率為$\frac{2}{5}$.
(Ⅰ)求甲隊(duì)分別以4:2,4:3獲勝的概率;
(Ⅱ)設(shè)X表示決出冠軍時(shí)比賽的場(chǎng)數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知3A${\;}_{8}^{n}$=4A${\;}_{9}^{n-1}$,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.四面體ABCD的四個(gè)頂點(diǎn)均在半徑為2的球面上,若AB、AC、AD兩兩垂直,$\overrightarrow{BA}•\overrightarrow{BC}$=2,則該四面體體積的最大值為( 。
A.$\frac{7\sqrt{2}}{6}$B.$\frac{7}{3}$C.2$\sqrt{2}$D.7$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=ex(lnx-a),e是自然對(duì)數(shù)的底數(shù),e≈2.718…,a∈R且為常數(shù).
(1)若y=f(x)在x=1處的切線的斜率為2e,求a的值;
(2)若y=f(x)在區(qū)間[ln2,ln3]上為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案