| A. | (-∞,-3)∪(0,3) | B. | (-∞,-3)∪(3,+∞) | C. | (-3,0)∪(3,+∞) | D. | (-3,0)∪(0,3) |
分析 構造函數(shù)h(x)=f(x)g(x),利用已知可判斷出其奇偶性和單調性,進而即可得出不等式的解集.
解答 解:令h(x)=f(x)g(x),則h(-x)=f(-x)g(-x)=-f(x)g(x)=-h(x),因此函數(shù)h(x)在R上是奇函數(shù).
①∵當x<0時,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0時單調遞增,
故函數(shù)h(x)在R上單調遞增.
∵h(-3)=f(-3)g(-3)=0,
∴h(x)=f(x)g(x)<0=h(-3),
∴x<-3.
②當x>0時,函數(shù)h(x)在R上是奇函數(shù),可知:h(x)在(0,+∞)上單調遞增,且h(3)=-h(-3)=0,
∴h(x)<0,的解集為(0,3).
∴不等式f(x)g(x)<0的解集是(-∞,-3)∪(0,3).
故選:A
點評 本題考查的知識點是函數(shù)的單調性與奇偶性,恰當構造函數(shù),熟練掌握函數(shù)的奇偶性單調性是解題的關鍵
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com