欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
5.已知函數f(x)=$\frac{x}{1+x}$,數列{an}滿足a1=a(a為常數,且a>0),an+1=f(an),n∈N*
(Ⅰ)計算a2,a3,a4,并由此猜想出數列{an}的通項公式;
(Ⅱ)用數學歸納法證明你的猜想.

分析 (Ⅰ)由由已知得,${a_{n+1}}=f({a_n})=\frac{a_n}{{1+{a_n}}}$,可求得a2,a3,a4的值,從而可猜想{an}的一個通項公式.
(Ⅱ)按照數學歸納法的證題步驟:先證明n=1時命題成立,再假設當n=k時結論成立,去證明當n=k+1時,結論也成立,從而得出命題對任意的正整數n恒成立.

解答 解:(Ⅰ)由已知得,${a_{n+1}}=f({a_n})=\frac{a_n}{{1+{a_n}}}$,
所以${a_2}=f({a_1})=\frac{a}{1+a}$,${a_3}=f({a_2})=\frac{{\frac{a}{1+a}}}{{1+\frac{a}{1+a}}}=\frac{a}{1+2a}$,${a_4}=f({a_3})=\frac{{\frac{a}{1+2a}}}{{1+\frac{a}{1+2a}}}=\frac{a}{1+3a}$,
由此猜想數列的通項公式應為${a_n}=\frac{a}{1+(n-1)a}(n∈{N^*})$…(6分)
(Ⅱ)①當n=1時,猜想顯然成立…(7分)
②假設n=k(k∈N*)時,猜想成立,即${a_k}=\frac{a}{1+(k-1)a}$…(8分)
則當n=k+1時,${a_{k+1}}=f({a_k})=\frac{a_k}{{1+{a_k}}}=\frac{{\frac{a}{1+(k-1)a}}}{{1+\frac{a}{1+(k-1)a}}}=\frac{a}{1+ka}=\frac{a}{1+[(k+1)-1]a}$,
即當n=k+1時,猜想成立.…(11分)
由①②知,${a_n}=\frac{a}{1+(n-1)a}$對一切正整數n都成立.…(12分)

點評 本題考查數學歸納法,考查推理證明的能力,假設n=k(k∈N*)時命題成立,去證明則當n=k+1時,用上歸納假設是關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

15.要使$\root{3}{a}$+$\root{3}$<$\root{3}{a+b}$成立,則a,b應滿足$\left\{\begin{array}{l}{a>0}\\{b<0}\\{|a|>|b|}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{b>0}\\{|b|>|a|}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{b<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.當n≥2,n∈N*時,設f(n)=(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)•…•(1-$\frac{1}{{n}^{2}}$).
(Ⅰ)求f(2)、f(3)、f(4)的值;
(Ⅱ)猜想f(n)的表達式,并用數學歸納法證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知圓O為單位圓:x2+y2=1,點A(1,0),B為單位圓上的動點,如圖,以AB為邊作正方形ABCD,求動點D的軌跡方程及OD的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{2}$,其上下頂點分別為C1,C2,點A(1,0),B(3,2),AC1⊥AC2
(1)求橢圓E的方程及離心率;
(2)點P的坐標為(m,n)(m≠3),過點A任意作直線l與橢圓E相交于點M,N兩點,設直線MB,BP,NB的斜率依次成等差數列,探究m,n之間是否滿足某種數量關系,若是,請給出m,n的關系式,并證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.已知橢圓$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{3}{5}$,兩焦點的距離為3,則a+b=4.5.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.設P是曲線2x2-y2=1上的一動點,O為坐標原點,M為線段OP的中點,則點M的軌跡方程為8x2-4y2=1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知數列{an}的首項a1=1,且an+1=an+2n+1.
(1)求{an}的通項公式;
(2)若bn=$\frac{2}{{a}_{n}+2n}$(n∈N*),求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.若復數z滿足z+z•i=2+3i,則在復平面內z對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案