欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.自雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點 F1、F2分別向兩條漸近線作垂線,垂足分別為A、B,連接AB,若梯形ABF2F1的面積為$\frac{3}{2}$,且ab=1,則雙曲線的離心率為$\sqrt{2}$.

分析 求出雙曲線的焦點和漸近線方程,聯(lián)立直線方程,可得垂足B的坐標(biāo),及A的坐標(biāo),運用梯形的面積公式和離心率公式,計算即可得到所求.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的焦點為F1(-c,0),F(xiàn)2(c,0),
漸近線方程為y=±$\frac{a}$x,
由F2向漸近線y=$\frac{a}$x作垂線交點為B,
由$\left\{\begin{array}{l}{y=\frac{a}x}\\{y=-\frac{a}(x-c)}\end{array}\right.$解得B($\frac{a}{bc}$,$\frac{1}{c}$),
即有A(-$\frac{a}{bc}$,$\frac{1}{c}$),
則梯形ABF2F1的面積為$\frac{1}{2}$(2c+$\frac{2a}{bc}$)•$\frac{1}{c}$=$\frac{3}{2}$,
即為2a=bc2,
又ab=1,即a=$\frac{1}$,
c2=a2+b2,
可得a=b=1,c=$\sqrt{2}$,
即有e=$\frac{c}{a}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點評 本題考查雙曲線的方程和性質(zhì),主要考查漸近線方程和離心率的求法,考查直線方程求交點,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2,g(x)=ax+3(a∈R),記函數(shù)F(x)=f(x)-g(x).
(1)判斷方程F(x)=0的實根的個數(shù);
(2)設(shè)F(x)在區(qū)間[1,2]的最小值為g(a),求g(a)的表達(dá)式;
(3)若函數(shù)|F(x)|在[0,1]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,水平放置的三棱柱的側(cè)棱長和底邊長均為4,且側(cè)棱垂直于底面,正視圖是邊長為4的正方形,則三棱柱的左視圖面積為( 。
A.8$\sqrt{3}$B.2$\sqrt{2}$C.$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)是定義在R上周期為2的奇函數(shù),當(dāng)x∈(0,1)時,f(x)=3x-1,則f(log35)=( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.4D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)+f(-x)=8,f(lg(log210))=5,則f(lg(lg2))=( 。
A.-5B.-1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=loga(1+x)-loga(1-x)的圖象經(jīng)過點(-$\frac{1}{2}$,-1).
(1)求實數(shù)a;
(2)判斷函數(shù)f(x)的奇偶數(shù),并寫出f($\frac{1}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.有一組實驗數(shù)據(jù)如表:
t1.993.04.05.16.12
y1.504.047.5012.0018.01
給出下列函數(shù):①v=log${\;}_{\frac{1}{2}}$t;②v=$\sqrt{t}$;③v=($\frac{3}{2}$)t④y=$\frac{{t}^{2}-1}{2}$;
現(xiàn)準(zhǔn)備用下列函數(shù)中的一個近似地表示這些數(shù)據(jù)滿足的規(guī)律,其中最接近的一個是④(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)f(x)=$\frac{1}{2}$x2-mx+3lnx,g(x)=$\frac{2x+m}{{x}^{2}+3}$,a、b是f(x)的極值點,且0<a<b,
(1)求實數(shù)m的取值范圍;
(2)指出g(x)在區(qū)間[-b,-a]上的單調(diào)性,并證明;
(3)設(shè)g(x)在區(qū)間[-b,-a]上的最大值比最小值大$\frac{2}{3}$,討論方程f(x)=k的實數(shù)解個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|x2-3x≤0},B={x|2a≤x≤a+2}
(1)當(dāng)a=1時,求A∩B;
(2)當(dāng)集合A,B滿足B?A時,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案