分析 (1)取棱PB的中點(diǎn)Q,連結(jié)QM,QA,又M為PC的中點(diǎn),證明QM∥AD,利用直線與平面平行的判定定理證明QM∥面PAD.
(2)設(shè)點(diǎn)D到平面PAC的距離為h,由VD-PAC=VP-ACD,通過證明以及計算即可求點(diǎn)D到平面PAM的距離.
解答 解:(1)當(dāng)點(diǎn)Q為棱PB的中點(diǎn)時,QM∥面PAD,證明如下
…(1分)
取棱PB的中點(diǎn)Q,連結(jié)QM,QA,又M為PC的中點(diǎn),
所以$QM∥BC且QM=\frac{1}{2}BC$,
在菱形ABCD中AD∥BC可得QM∥AD…(3分)
又QM?面PAD,AD?面PAD
所以QM∥面PAD…(5分)
(2)點(diǎn)D到平面PAM的距離即點(diǎn)D到平面PAC的距離,
由(Ⅰ)可知PO⊥AD,又平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,PO?平面PAD,所以PO⊥平面ABCD,
即PO為三棱錐P-ACD的體高.…(7分)
在Rt△POC中,$PO=OC=\sqrt{3}$,$PC=\sqrt{6}$,
在△PAC中,PA=AC=2,$PC=\sqrt{6}$,邊PC上的高AM=$\sqrt{P{A^2}-P{M^2}}=\frac{{\sqrt{10}}}{2}$,
所以△PAC的面積${S_{△PAC}}=\frac{1}{2}PC•AM=\frac{1}{2}×\sqrt{6}×\frac{{\sqrt{10}}}{2}=\frac{{\sqrt{15}}}{2}$,…(9分)
設(shè)點(diǎn)D到平面PAC的距離為h,
由VD-PAC=VP-ACD得 $\frac{1}{3}{S_{△PAC}}•h=\frac{1}{3}{S_{△ACD}}•PO$…(10分)
,又${S_{△ACD}}=\frac{{\sqrt{3}}}{4}×{2^2}=\sqrt{3}$,所以$\frac{1}{3}×\frac{{\sqrt{15}}}{2}•h=\frac{1}{3}×\sqrt{3}×\sqrt{3}$,…(11分)
解得$h=\frac{{2\sqrt{15}}}{5}$,所以點(diǎn)D到平面PAM的距離為$\frac{{2\sqrt{15}}}{5}$.…(12分)
點(diǎn)評 本題考查直線與平面平行的判定定理的應(yīng)用,幾何體的體積的求法,點(diǎn)線面距離的求法,等體積的方法的應(yīng)用,考查空間想象能力以及計算能力.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,4) | B. | (-4,0) | C. | $(0,\frac{15}{4})$ | D. | $(\frac{1}{2},2)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com