分析 設(shè)B點(diǎn)橫坐標(biāo)為m時(shí),△ABC的面積最大,由題意可知,AB的長不變,所以當(dāng)點(diǎn)C到直線AB距離最大時(shí),△ABC的面積S最大.結(jié)合點(diǎn)到直線距離公式求出m的值,進(jìn)而可得面積的最大值.
解答 解:設(shè)B點(diǎn)橫坐標(biāo)為m時(shí),△ABC的面積最大,
∵AB邊長一定,
∴當(dāng)點(diǎn)C到直線AB距離最大時(shí),△ABC的面積S最大.
∵A(1,1),B(4,2),
∴直線AB方程為x-3y+2=0.
點(diǎn)C(m,$\sqrt{m}$)到直線AB距離d=$\frac{|m-3\sqrt{m}+2|}{\sqrt{10}}$.
∵1<m<4,
∴$\sqrt{m}$=$\frac{3}{2}$,
即m=$\frac{9}{4}$時(shí),d取最大$\frac{\sqrt{10}}{40}$,
由|AB|=$\sqrt{10}$,
故此時(shí)△ABC的面積S取最大值$\frac{1}{8}$.
點(diǎn)評(píng) 本題考查橢圓的基本性質(zhì)及其應(yīng)用,解題時(shí)要注意公式的靈活運(yùn)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $-\frac{2}{3},\frac{1}{2},\frac{1}{2}$ | B. | $\frac{1}{2},-\frac{2}{3},\frac{1}{2}$ | C. | $\frac{1}{2},\frac{1}{2},-\frac{1}{2}$ | D. | $\frac{2}{3},\frac{2}{3},-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $|{\begin{array}{l}0\\ 1\end{array}}|$ | B. | $|{\begin{array}{l}1\\ 0\end{array}}|$ | C. | $|{\begin{array}{l}0\\ 0\end{array}}|$ | D. | $|{\begin{array}{l}1\\{-1}\end{array}}|$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com