分析 (1)利用a>0,函數(shù)f(x)=x+$\frac{a{\;}^{2}}{x}$,且f(-1)=-5,代入計(jì)算即可求a的值;
(2)代入計(jì)算,即可證明:f(-x)+f(x)=0.
解答 (1)解:∵f(x)=x+$\frac{a{\;}^{2}}{x}$,且f(-1)=-5,
∴-1-a2=-5,
∴a2=4,
∵a>0,
∴a=2;
(2)證明:f(x)=x+$\frac{4}{x}$,
∴f(-x)+f(x)=-x-$\frac{4}{x}$+x+$\frac{4}{x}$=0.
點(diǎn)評(píng) 本題考查函數(shù)解析式的確定,考查函數(shù)的性質(zhì),正確計(jì)算是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x=si{n}^{2}t}\\{y=sint}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x=\frac{1-cos2t}{1+cos2t}}\\{y=tant}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=t}\\{y=\sqrt{|t|}}\end{array}\right.$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com