| A. | (-∞,1] | B. | [1,+∞) | C. | (-2,1] | D. | [1,4) |
分析 令t=-x2+2x+8>0,求得函數(shù)的定義域為(-2,4),函數(shù)y=lgt,本題即求函數(shù)t=-(x-1)2+9在(-2,4)上的增區(qū)間.再利用二次函數(shù)的性質(zhì)可得結(jié)論.
解答 解:令t=-x2+2x+8>0,求得-2<x<4,故函數(shù)的定義域為(-2,4),函數(shù)y=lgt,
故本題即求函數(shù)t=-(x-1)2+9在(-2,4)上的增區(qū)間.
再利用二次函數(shù)的性質(zhì)可得函數(shù)t 在(-2,4)上的增區(qū)間為(-2,1],
故選:C.
點評 本題主要考查對數(shù)函數(shù)、二次函數(shù)的性質(zhì),復合函數(shù)的單調(diào)性,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 0 | B. | $\frac{3}{2}$ | C. | 3 | D. | $\frac{9}{2}\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 0 | B. | 1 | C. | (1-$\frac{2}{2+n}$)n | D. | 4($\frac{2}{2+n}$)n+2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | [-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ](k∈Z) | B. | [$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ](k∈Z) | ||
| C. | [-$\frac{π}{4}$+2kπ,$\frac{3π}{4}$+2kπ](k∈Z) | D. | [$\frac{π}{4}$+2kπ,$\frac{5π}{4}$+2kπ](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ¬p | B. | p∧q | C. | (¬p)∧q | D. | p∧(¬q) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com