分析 nan+1=Sn+n(n+1),可得a2=a1+2=4.當(dāng)n≥2時(shí),相減可得nan+1-(n-1)an=an+2n,即an+1-an=2,利用等差數(shù)列的通項(xiàng)公式即可得出.
解答 解:∵nan+1=Sn+n(n+1),
∴a2=a1+2=4.
當(dāng)n≥2時(shí),(n-1)an=Sn-1+n(n-1),
∴nan+1-(n-1)an=an+2n,
∴an+1-an=2,
當(dāng)n=1時(shí),上式也成立.
∴數(shù)列{an}是等差數(shù)列,公差為2,首項(xiàng)為2.
∴an=2+2(n-1)=2n.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-∞,1] | B. | [3,+∞) | C. | [1,3] | D. | (-∞,1]∪[3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-∞,0] | B. | [$-\frac{2}{3}$,$\frac{2}{3}$] | C. | (-∞,-$\frac{2}{3}$] | D. | (-∞,-$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | y′=3xsinx2•sin2x2 | B. | y′=3(sinx2)2 | ||
| C. | y′=3(sinx2)2cosx2 | D. | y′=6sinx2cosx2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com