分析 (1)直接利用有理指數(shù)冪的運算性質(zhì)和對數(shù)的運算性質(zhì)化簡得答案;
(2)由已知分別求出${x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}$、x2-x-2的值,則答案可求.
解答 解:(1)${27^{-\frac{1}{3}}}+lg0.01-ln\sqrt{e}+{3^{{{log}_3}2}}$
=$({3}^{3})^{-\frac{1}{3}}+lg1{0}^{-2}-ln{e}^{\frac{1}{2}}+2$
=$\frac{1}{3}-2-\frac{1}{2}+2$
=-$\frac{1}{6}$
(2)∵x+x-1=3,
∴${x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}$=$\sqrt{({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}}$=$\sqrt{x+{x}^{-1}+2}=\sqrt{5}$,
x2-x-2=(x+x-1)(x-x-1)=$±3\sqrt{(x+{x}^{-1})^{2}-4}=±3\sqrt{5}$,
∴$\frac{{{x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}}}{{{x^2}-{x^{-2}}}}$=$±\frac{\sqrt{5}}{3\sqrt{5}}=±\frac{1}{3}$.
點評 本題考查有理指數(shù)冪的運算性質(zhì),考查了對數(shù)的運算性質(zhì),是基礎的計算題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{5}{4}$ | B. | $\frac{4}{5}$ | C. | $\frac{9}{16}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | f(x)=log22x,g(x)=$\root{3}{{x}^{3}}$ | B. | f(x)=$\sqrt{{x}^{2}}$,g(x)=x | ||
| C. | f(x)=x,g(x)=$\frac{{x}^{2}}{x}$ | D. | f(x)=lnx2,g(x)=2lnx |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com