分析 利用正弦定理分別在△RQO和△RPO中分別表示出OQ和OP,進而根據(jù)tan∠OPQ=$\frac{OQ}{OP}$求得答案.
解答 ![]()
解:依題意可知RQ=2QP,
在△RQO中,$\frac{OQ}{sinR}$=$\frac{RQ}{sin30°}$,
OQ=$\frac{RQ}{sin30°}$•sinR,
同理在△RPO中,OP=$\frac{RP}{sin120°}$•sinR,
tan∠OPQ=$\frac{OQ}{OP}$=$\frac{\frac{RQ}{sin30°}}{\frac{RP}{sin120°}}$=$\frac{RQ}{sin30°}$•$\frac{sin120°}{RP}$=$\frac{2}{3}$×$\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}$=$\frac{2\sqrt{3}}{3}$.
點評 本題主要考查了正弦定理的運用.解決問題的關鍵是運用sinR作為中間量來解決.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | a17=0 | B. | a6+a12=0 | C. | S17>0 | D. | a9<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | [1,2] | B. | (-1,2) | C. | [-1,2] | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | |a+b|>|a-b| | B. | |a|+|b|>|a-b| | C. | |a-c|≤|a-b|+|b-c| | D. | |a-b|<|a|-|b| |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com