欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得$\sum_{i=1}^{10}$xi=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$x${\;}_{i}^{2}$=720.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;
(2)判斷變量x與y之間是正相關(guān)還是負相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.
附:線性回歸方程y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值.

分析 (1)由題意可知n,$\overline{x}$,$\overline{y}$,進而代入可得b、a值,可得方程;
(2)由回歸方程x的系數(shù)b的正負可判;
(3)把x=7代入回歸方程求其函數(shù)值即可.

解答 解:(1)由題意知n=10,$\overline{x}$=$\frac{80}{10}$=8,$\overline{y}$=$\frac{20}{10}$=2,
又$\sum_{i=1}^{10}$x${\;}_{i}^{2}$-n×$\overline{x}$2=720-10×82=80,$\sum_{i=1}^{10}$xiyi-n$\overline{x}$$\overline{y}$=184-10×8×2=24,
由此得b═$\frac{24}{80}$=0.3,a=2-0.3×8=-0.4,
故所求回歸方程為$\stackrel{∧}{y}$=0.3x-0.4.…(6分)
(2)由于變量y的值隨x的值增加而增加(b=0.3>0),故x與y之間是正相關(guān).…(9分)
(3)將x=7代入回歸方程可以預(yù)測該家庭的月儲蓄為y=0.3×7-0.4=1.7(千元).…(12分)

點評 本題考查線性回歸方程的求解及應(yīng)用,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=f(x)滿足對任意x∈R都有f(x+2)=f(-x)成立,且函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,f(1)=4,則f(2012)+f(2013)+f(2014)的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知一切x,y∈R,不等式x2+$\frac{81}{{x}^{2}}$-2xy+$\frac{18}{x}$$\sqrt{2-{y}^{2}}$-a≥0恒成立,則實數(shù)a的取值范圍是(-∞,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2+(a-1)x(a∈R).
(Ⅰ)試求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=2ex(x+1),當(dāng)a=2時,不等式-lnx+2x2+x+1<m•g(x)-f(x)對?x∈(-1,+∞)恒成立,求實數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=F(x)的圖象為曲線C,設(shè)點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x0,y0),使得:①x0=$\frac{{x}_{1}+{x}_{2}}{2}$;②曲線C在點M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.請問:函數(shù)y=f(x)(a∈R且a≠0)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:
使用年限x23456
維修費用y2.23.85.56.57.0
若由資料知y對x成線性相關(guān)關(guān)系、試求:
(1)線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$的回歸系數(shù)$\stackrel{∧}$與$\stackrel{∧}{a}$
(2)估計使用年限為10年時,維修費用是多少?(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.一個袋中裝有若干個大小相同的黑球、白球和紅球.已知從袋中任意摸出1個球,得到黑球的概率是$\frac{2}{5}$;從袋中任意摸出2個球,至少得到1個白球的概率是$\frac{7}{9}$.
(1)若袋中共有10個球,①求白球的個數(shù);②從袋中任意摸出3個球,記得到白球的個數(shù)為ξ,求隨機變量ξ的數(shù)學(xué)期E(ξ);
(2)求證:從袋中任意摸出2個球,至少得到1個黑球的概率不大于$\frac{7}{10}$,并指出袋中哪種顏色的球個數(shù)最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ為參數(shù)),以Ο為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過極點的圓,已知曲線C1上的點M(2,$\sqrt{3}$)對應(yīng)的參數(shù)φ=$\frac{π}{3}$.θ=$\frac{π}{4}$與曲線C2交于點D($\sqrt{2}$,$\frac{π}{4}$).
(1)求曲線C1,C2的直角坐標(biāo)方程;
(2)A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲線C1上的兩點,求$\frac{1}{{ρ}_{1}^{2}}$+$\frac{1}{{ρ}_{2}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2.
(1)求BC1與平面ABCD所成角的余弦值;
(2)證明:AC1⊥BD;
(3)求AC1與平面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)數(shù)列{an}滿足a1=1,an+1=an+n+1,則an=$\frac{n(n+1)}{2}$.

查看答案和解析>>

同步練習(xí)冊答案