欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.已知二次函數(shù)f(x)=ax2-2ax+2+b在區(qū)間[2,3]上有最大值5,最小值2.
(1)求f(x)的解析式;
(2)若b>1,g(x)=f(x)+mx在[2,4]上為單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍.

分析 (1)求出f(x)的對稱軸x=1,故f(x)在[2,3]上單調(diào),列出方程組解出a,b;
(2)求出g(x)的解析式,對稱軸,根據(jù)單調(diào)性得出對稱軸與區(qū)間[2,4]的關(guān)系,解出m.

解答 解:(1)f(x)的對稱軸為x=1,
①若a>0,則f(x)在[2,3]上是增函數(shù),∴$\left\{\begin{array}{l}{f(2)=2+b=2}\\{f(3)=3a+2+b=5}\end{array}\right.$,解得a=1,b=0.
②若a<0,則f(x)在[2,3]上是減函數(shù),∴$\left\{\begin{array}{l}{f(2)=2+b=5}\\{f(3)=3a+2+b=2}\end{array}\right.$,解得a=-1,b=3.
∴f(x)=x2-2x+2或f(x)=-x2+2x+5.
(2)∵b>1,∴f(x)=-x2+2x+5.∴g(x)=-x2+(m+2)x+5.∴g(x)的對稱軸為x=$\frac{m+2}{2}$.
∵g(x)在[2,4]上為單調(diào)函數(shù),∴$\frac{m+2}{2}$≤2或$\frac{m+2}{2}$≥4,解得m≤2或m≥6.
∴實(shí)數(shù)m的取值范圍是(-∞,2]∪[6,+∞).

點(diǎn)評 本題考查了二次函數(shù)的單調(diào)性與對稱軸的關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等比數(shù)列{an},首項(xiàng)a1=2,公比q=3,ap+ap+1+…+ak=2178(k>p,p,k∈N+),則p+k=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.試求出函數(shù)y=cos2x-sin2x+2sinxcosx的單調(diào)遞增區(qū)間和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,四棱柱ABCD-A1B1C1D1中,平面A1ADD1⊥平面ABCD,底面ABCD為直角梯形,且∠ADC=$\frac{π}{2}$,AB∥CD.點(diǎn)E為棱D1D上的一點(diǎn)(異于點(diǎn)D1).
(1)求證:C1D1∥平面ABE;
(2)求證:平面ABE⊥平面A1ADD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=f(2x)的定義域?yàn)閇1,2],則函數(shù)y=f(log2x)的定義域?yàn)椋ā 。?table class="qanwser">A.[0,1]B.[1,2]C.[2,4]D.[4,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知實(shí)數(shù)a,b,c滿足$\left\{\begin{array}{l}{c>0}\\{^{2}=ac}\\{3b≥2a+c}\end{array}\right.$,則$\frac{4a+2b+c}{a+b}$的最大值與最小值之和為( 。
A.$\frac{15}{2}$B.$\frac{13}{2}$C.$\frac{31}{2}$D.$\frac{51}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C所對的邊分別為a,b,c,2cos2B-8cosB+5=0.
(1)若a,b,c成等比數(shù)列,求角A,C的大;
(2)求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.冪函數(shù)$y={x^{\frac{4}{5}}}$的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,a,b,c分別是角A,B,C的對邊,a=8,b=4,A=60°,則cosB=( 。
A.$\frac{\sqrt{13}}{4}$B.$\frac{\sqrt{3}}{4}$C.-$\frac{\sqrt{3}}{4}$D.-$\frac{\sqrt{13}}{4}$

查看答案和解析>>

同步練習(xí)冊答案