分析 (1)利用三角函數(shù)的平方關(guān)系式,消去參數(shù),即可得到直角坐標(biāo)方程.
(2)求出直線的直角坐標(biāo)方程,通過(guò)直線與圓的位置關(guān)系,圓心到直線的距離求解最值即可.
解答 解:(1)因?yàn)榍C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosα\\ y=2sinα+2\end{array}\right.$,參數(shù)α∈[0,2π],
所以曲線C的直角坐標(biāo)方程為x2+(y-2)2=4…(3分)
(2)∵$ρsin(θ-\frac{π}{3})=5$
∴$\frac{1}{2}ρsinθ-\frac{{\sqrt{3}}}{2}ρcosθ=5$,即$ρsinθ-\sqrt{3}ρcosθ=10$
∴直線l的直角坐標(biāo)方程為$\sqrt{3}x-y+10=0$…(6分)
由(1)知曲線C的方程為x2+(y-2)2=4,是(0,2)為圓心,半徑為2的圓.
圓心到直線的距離$d=\frac{|-2+10|}{{\sqrt{{{(\sqrt{3})}^2}+{1^2}}}}=4$,
圓與直線l相離,…(9分)
所以圓C上任一點(diǎn)到直線l的距離的最大值為4+2=6…(10分)
點(diǎn)評(píng) 本題考查圓的參數(shù)方程,直線的極坐標(biāo)方程與普通方程的互化,直線與圓的位置關(guān)系的應(yīng)用,考查計(jì)算能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x2-$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{3}-{y}^{2}=1$ | C. | y2-$\frac{{x}^{2}}{3}$=1 | D. | $\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $y=x+1與y=\frac{{{x^2}+x}}{x}$ | B. | $f(x)=\frac{x^2}{{{{({\sqrt{x}})}^2}}}與g(x)=x$ | ||
| C. | $f(x)=x\frac{|x|}{x}與f(t)=\left\{\begin{array}{l}t(t>0)\\-t(t<0)\end{array}\right.$ | D. | $f(x)=|x|與g(x)=\left\{\begin{array}{l}x(x>0)\\-x(x<0)\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com