分析 (1)根據(jù)三角形內(nèi)角和定理和誘導(dǎo)公式求得cosB=-cos(A+C),然后由和差化積公式得到sinAsinC=$\frac{3\sqrt{5}}{10}$;結(jié)合正弦定理來求A的值即可;
(2)欲求線段BD的長度,需要由正弦定理$\frac{a}{sinA}$=$\frac{sinB}$求得b的長度,在該等式中,sinB是未知數(shù),所以由sinB=sin(A+C)來求sinB的值即可.
解答
解:(1)由B=π-(A+C),得
cosB=-cos(A+C),
所以cos(A-C)+cosB=cos(A-C)-cos(A+C)=2sinAsinC=$\frac{3\sqrt{5}}{5}$,
所以sinAsinC=$\frac{3\sqrt{5}}{10}$,①
由c=$\frac{3\sqrt{5}}{5}$a及正弦定理得到:sinC=$\frac{3\sqrt{5}}{5}$sinA,②
由①②得,sin2A=$\frac{1}{2}$,
于是sinA=-$\frac{\sqrt{2}}{2}$(舍去),或sinA=$\frac{\sqrt{2}}{2}$.
又角C為鈍角,
所以A=$\frac{π}{4}$;
(2)由(1)知,sinC=$\frac{3\sqrt{5}}{5}$sinA=$\frac{3\sqrt{5}}{5}$×$\frac{\sqrt{2}}{2}$=$\frac{3\sqrt{10}}{10}$.
因?yàn)榻荂為鈍角,
所以cosC=-$\sqrt{1-si{n}^{2}C}$=$\sqrt{1-\frac{9}{10}}$=-$\frac{\sqrt{10}}{10}$.
所以sinB=sin(A+C)=sinAcosC+cosAsinC=-$\frac{\sqrt{2}}{2}$×$\frac{\sqrt{10}}{10}$+$\frac{\sqrt{2}}{2}$×$\frac{3\sqrt{10}}{10}$=$\frac{\sqrt{5}}{5}$.
由正弦定理知,$\frac{a}{sinA}$=$\frac{sinB}$⇒b=2⇒CD=1,
在△DBC中,BD2=BC2+DC2-2BC•DCcosC=13,
故BD=$\sqrt{13}$.
點(diǎn)評(píng) 本題考查了正弦定理、兩角和與差的正弦函數(shù).考查轉(zhuǎn)化的思想,考查運(yùn)算能力,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2-i | B. | 1+2i | C. | -1+2i | D. | -1-2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -1 | B. | 5 | C. | -8 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{3}$+1 | D. | $\sqrt{2}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 兩條射線 | B. | 兩條直線 | C. | 一條射線 | D. | 一條直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com