分析 (Ⅰ)通過正弦定理化簡asinC=2csinB,推出a、b關(guān)系,求出a、b通過余弦定理求出c.
(Ⅱ)在△ABC中,求出A的二倍角的增函數(shù)余弦函數(shù)值,利用兩角差的余弦函數(shù)求解即可.
解答 解:(Ⅰ)在△ABC中,由asinC=2csinB
得ac=2cb,∴a=2b,----------------------------(2分)
又b=2,∴a=4,---------------------------(3分)
∵${cosA}=-\frac{1}{4}$∴由a2=b2+c2-2bccosA得$16=4+{c^2}-4c(-\frac{1}{4})$--------------------(4分)
∴c2+c-12=0,又c>0,∴c=3---------------------------(5分)
(Ⅱ)在△ABC中,由$cosA=-\frac{1}{4}$得$sinA=\sqrt{1-{{cos}^2}A}=\frac{{\sqrt{15}}}{4}$-------------(7分)
∴$sin2A=2sinAcosA=-\frac{{\sqrt{15}}}{8}$---------------------------(9分)
$cos2A={cos^2}A-{sin^2}A=-\frac{7}{8}$---------------------------(11分)∴$cos(2A-\frac{π}{3})=cos2Acos\frac{π}{3}+sin2Asin\frac{π}{3}$---------------------------(12分)
=$-\frac{7}{8}•\frac{1}{2}+(-\frac{{\sqrt{15}}}{8})•\frac{{\sqrt{3}}}{2}=-\frac{{7+3\sqrt{5}}}{16}$---------------------------(13分)
點(diǎn)評 本題考查正弦定理以及余弦定理的應(yīng)用,兩角和與差的三角函數(shù),考查計算能力.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6 | B. | 12 | C. | 24 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 34種 | B. | 48種 | C. | 96種 | D. | 144種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{\sqrt{10}}{2}$ | B. | $\sqrt{10}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com