【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會必須打好的三大攻堅戰(zhàn)之一. 堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村中60戶農(nóng)民種植蘋果、40戶農(nóng)民種植梨、20戶農(nóng)民種植草莓(每戶僅扶持種植一種水果),為了更好地了解三種水果的種植與銷售情況,現(xiàn)從該村隨機(jī)選6戶農(nóng)民作為重點考察對象;
(1)用分層抽樣的方法,應(yīng)選取種植蘋果多少戶?
(2)在上述抽取的6戶考察對象中隨機(jī)選2戶,求這2戶種植水果恰好相同的概率.
【答案】(1)3(2)![]()
【解析】
(1)利用分層抽樣,求出抽樣的比例,即可求出結(jié)果;
(2)由(1)可設(shè)蘋果戶為A,B,C;梨戶為a,b;草莓戶為1,然后再從6戶任選2戶,列出基本事件總數(shù),找到滿足要求的基本事件數(shù),根據(jù)古典概型即可求出結(jié)果.
(1)
,
所以應(yīng)選取種植蘋果
戶.
(2)記蘋果戶為A,B,C;梨戶為a,b;草莓戶為1;則從6戶任選2戶,基本事件總數(shù)為:AB,AC,Aa,Ab,A1,BC,Ba,Bb,B1,Ca,Cb,C1,ab,a1,b1共15種;
設(shè)“6戶中選2戶,這兩戶種植水果恰好相同”為事件M,則事件M包含的基本事件數(shù)為:AB,AC,BC,ab共4種;
所以,概率為:![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五面體
中,四邊形
是菱形,
是邊長為2的正三角形,
,
.
![]()
(1)證明:
;
(2)若
在平面
內(nèi)的正投影為
,求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面一道題目的證明,指出其中的一處錯誤。題目:平面上有六個點,任何三點都是三邊互不相等三角形的頂點,則這些三角形中有一個的最短邊又是另一個三角形的最長邊。證明:第一步,對已知的六個點作兩兩連線,可以得出15條邊,記為
,
,…,
.第二步,由于任何三點組成的都是“三邊互不相等的三角形”,因此,15條邊互不相等不妨設(shè)
.第三步,由于“任何三點都是三邊互不相等三角形的頂點”,因此,任取三條邊都可以組成三角形,則
、
、
組成的三角形的最長邊
,也是
、
、
組成的三角形的最短邊,命題得證.這三步中,第______步有錯誤,理由是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考方案的實施,學(xué)生對物理學(xué)科的選擇成了焦點話題. 某學(xué)校為了了解該校學(xué)生的物理成績,從
,兩個班分別隨機(jī)調(diào)查了40名學(xué)生,根據(jù)學(xué)生的某次物理成績,得到
班學(xué)生物理成績的頻率分布直方圖和
班學(xué)生物理成績的頻數(shù)分布條形圖.
![]()
(Ⅰ)估計
班學(xué)生物理成績的眾數(shù)、中位數(shù)(精確到
)、平均數(shù)(各組區(qū)間內(nèi)的數(shù)據(jù)以該組區(qū)間的中點值為代表);
(Ⅱ)填寫列聯(lián)表,并判斷是否有
的把握認(rèn)為物理成績與班級有關(guān)?
物理成績 | 物理成績 | 合計 | |
| |||
| |||
合計 |
附:
列聯(lián)表隨機(jī)變量
;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,傾斜角為
的直線經(jīng)過拋物線
的焦點
,且與拋物線交于
兩點.
![]()
(1)求拋物線的焦點
的坐標(biāo)及準(zhǔn)線
的方程;
(2)若
為銳角,作線段
的垂直平分線
交
軸于點
.證明
為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點的雙曲線
的右焦點為
,右頂點為
.
(1)求雙曲線
的方程;
(2)若直線
與雙曲線
恒有兩個不同的交點
和
,且
(其中
為坐標(biāo)原點),求實數(shù)
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個命題:
①若
為真命題,則
為真命題;
②命題“
,有
”的否定為“
,有
”;
③“平面向量
與
的夾角為鈍角”的充分不必要條件是“
”;
④在銳角三角形
中,必有
;
⑤
為等差數(shù)列,若
,則![]()
其中正確命題的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形
中,
,
,
,四邊形
為矩形,
,平面
平面
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求平面
與平面
所成二面角的正弦值;
(Ⅲ)若點
在線段
上,且直線
與平面
所成角的正弦值為
,求線段
的長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com