【題目】已知曲線
的方程為
(
,
為常數(shù)).
(1)判斷曲線
的形狀;
(2)設(shè)曲線
分別與
軸,
軸交于點(diǎn)
,
(
,
不同于原點(diǎn)
),試判斷
的面積
是否為定值?并證明你的判斷;
(3)設(shè)直線
:
與曲線
交于不同的兩點(diǎn)
,
,且
,求
的值.
【答案】(1)以點(diǎn)
為圓心,以
為半徑的圓.(2)答案見解析;(3)
或
.
【解析】試題分析:(1)將原式子化簡配方,得到
,可知曲線是圓;(2)因?yàn)檫@個三角形是直角三角形,三角形面積是底乘高,直接求出曲線和坐標(biāo)軸的交點(diǎn)即可。(3)首先向量坐標(biāo)化,得到
,聯(lián)立直線和曲線得到二次方程,根據(jù)韋達(dá)定理得
,求出即可。
解析:
(1)將曲線
的方程化為
,整理得
,
可知曲線
是以點(diǎn)
為圓心,以
為半徑的圓.
(2)
的面積
為定值.
證明如下:在曲線
的方程中令
,得
,得
,
在曲線
方程中令
,得
,得
,
所以
(定值).
(3)直線
與曲線
方程聯(lián)立得
,
設(shè)
,
,則
,
,
,
即
,即
,解得
或
,
當(dāng)
時(shí),滿足
;當(dāng)
時(shí),滿足
.
故
或
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等腰梯形
中(如圖1),
,
,
為線段
的中點(diǎn),
為線段
上的點(diǎn),
,現(xiàn)將四邊形
沿
折起(如圖2).
![]()
![]()
圖1 圖2
⑴求證:
平面
;
⑵在圖2中,若
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運(yùn)動”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
![]()
(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的
列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?
![]()
附:
,
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計(jì)其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有
人,超過10000步的有
人,設(shè)
,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),曲線C:
(α為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,取相同單位長度的極坐標(biāo)系,直線l:ρ
.
(Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(Ⅱ)曲線C上恰好存在三個不同的點(diǎn)到直線l的距離相等,分別求出這三個點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個學(xué)校高三年級分別有1100人,1000人,為了了解兩個學(xué)校全體高三年級學(xué)生在該地區(qū)二?荚嚨臄(shù)學(xué)成績清況,采用分層抽樣方法從兩個學(xué)校一共抽取了105名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
![]()
乙校:
![]()
(1)計(jì)算
的值;
(2)若規(guī)定考試成績在
內(nèi)為優(yōu)秀,請根據(jù)樣本估計(jì)乙校數(shù)學(xué)成績的優(yōu)秀率;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面
列聯(lián)表,并判斷是否有
的把握認(rèn)為兩個學(xué)校的數(shù)學(xué)成績有差異.
![]()
![]()
附:
;
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4一5:不等式選講.
已知函數(shù)
.
(1)求
的解集;
(2)設(shè)函數(shù)
,若
對任意的
都成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),等腰直角三角形ABC的底邊AB=4,點(diǎn)D在線段AC上,DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2)).
(1)求證:PB⊥DE;
(2)若PE⊥BE,PE=1,求點(diǎn)B到平面PEC的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:
![]()
①函數(shù)y=f(x)在區(qū)間
內(nèi)單調(diào)遞增;
②函數(shù)y=f(x)在區(qū)間
內(nèi)單調(diào)遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;
④當(dāng)x=2時(shí),函數(shù)y=f(x)有極小值;
⑤當(dāng)x=
時(shí),函數(shù)y=f(x)有極大值.
則上述判斷中正確的是( )
A. ①② B. ②③
C. ③④⑤ D. ③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐
中,已知異面直線
與
所成的角為
,給出下面三個命題:
:若
,則此四棱錐的側(cè)面積為
;
:若
分別為
的中點(diǎn),則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com