分析 由?x1∈[-1,2],都?x2∈[1,2],使得f(x1)≥g(x2),可得f(x)=x2+1在x1∈[-1,2]的最小值不小于g(x)=ax+2在x2∈[1,2]的最小值,構(gòu)造關(guān)于a的不等式組,可得結(jié)論.
解答 解:當x1∈[-1,2]時,由f(x)=x2+1得,對稱軸是x=0,
f(0)=1是函數(shù)的最小值,
當x2∈[1,2]時,g(x)=x+a為增函數(shù),
∴g(1)=a+1是函數(shù)的最小值,
又∵?x1∈[-1,2],都?x2∈[1,2],使得f(x1)≥g(x2),
可得f(x)=x2+1在x1∈[-1,2]的最小值不小于g(x)=ax+2在x2∈[1,2]的最小值,
即1≥a+1,
解得:a∈(-∞,0],
故實數(shù)a的取值范圍是(-∞,0],
故答案為:(-∞,0]
點評 本題考查的知識是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{10}$-$\sqrt{6}$ | B. | $\sqrt{6}$-$\sqrt{5}$ | C. | 2$\sqrt{6}$-$\sqrt{5}$ | D. | $\frac{\sqrt{5}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com