分析 (1)首先,根據(jù)已知條件,建立周期關(guān)系式,得到相應(yīng)的ω和A的值;
(2)結(jié)合(1),利用降冪公式和輔助角公式,化簡(jiǎn)函數(shù)解析式,然后,根據(jù)正弦函數(shù)的單調(diào)性確定a的值.
解答 解:(1)∵g(x)=tanx的周期為π,
∵它們的最小正周期之積為2π2,
∴函數(shù)f(x)=Asin(ωx+$\frac{π}{4}$)的周期為2π,
∴$\frac{2π}{ω}$=2π,∴ω=1,
∵2g($\frac{17π}{4}$)=2tan(4π+$\frac{π}{4}$)=2tan$\frac{π}{4}$=2,
∴f(x)的最大值為2,
∴A=2,
∴函數(shù)f(x)=2sin(x+$\frac{π}{4}$),
令-$\frac{π}{2}$+2kπ≤x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z,
∴-$\frac{3π}{4}$+2kπ≤x≤$\frac{π}{4}$+2kπ,
∴f(x)的單調(diào)遞增區(qū)間:[-$\frac{3π}{4}$+2kπ,$\frac{π}{4}$+2kπ],(k∈Z),
(2)結(jié)合(1),得
h(x)=$\frac{3}{2}$×4×sin2(x+$\frac{π}{4}$)+2$\sqrt{3}$cos2x,
=6×$\frac{1-cos(2x+\frac{π}{2})}{2}$+2$\sqrt{3}$×$\frac{1+cos2x}{2}$,
=3(1+sin2x)+$\sqrt{3}$cos2x+$\sqrt{3}$,
=3sin2x+$\sqrt{3}$cos2x+3+$\sqrt{3}$,
=2$\sqrt{3}$sin(2x+$\frac{π}{6}$)+3+$\sqrt{3}$,
∵x∈[a,$\frac{π}{3}$],h(x)有最小值為3,
∴sin(2x+$\frac{π}{6}$)=-$\frac{1}{2}$,
∴x=kπ-$\frac{π}{6}$,
∵當(dāng)-$\frac{π}{3}$≤x≤$\frac{π}{6}$時(shí),h(x)為單調(diào)遞增,
當(dāng)$\frac{π}{6}$≤x≤$\frac{2π}{3}$時(shí),h(x)為單調(diào)遞減,
∴h(x)在x=-$\frac{π}{6}$時(shí),有最小值3,
∴a=-$\frac{π}{6}$.
點(diǎn)評(píng) 本題重點(diǎn)考查了三角函數(shù)的周期性和單調(diào)性、三角函數(shù)的最值、輔助角公式等知識(shí),屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1 | B. | 3 | C. | 2015 | D. | -4028 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的$\frac{1}{2}$倍,縱坐標(biāo)不變 | |
| B. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍;縱坐標(biāo)不變 | |
| C. | 向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度,再把得所各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的$\frac{1}{2}$倍;縱坐標(biāo)不變 | |
| D. | 向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 有最大值,最大值為$\sqrt{3}$+1 | B. | 對(duì)稱軸方程是x=$\frac{7π}{12}$+kπ,k∈Z | ||
| C. | 在區(qū)間[$\frac{π}{12}$,$\frac{7π}{12}$]上單調(diào)遞增 | D. | 是周期函數(shù),周期T=$\frac{π}{2}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com