分析 (1)由條件利用正弦定理、兩角和差的正弦公式求得cosB=$\frac{1}{2}$,可得B=$\frac{π}{3}$.
(2)由條件利用余弦定理求得ac=1,可得△ABC的面積S△ABC=$\frac{1}{2}$ac•sinB 的值.
解答 解:(1)△ABC中,由已知bcosC+$\frac{1}{2}$c=a,利用正弦定理可得sinBcosC+$\frac{1}{2}$sinC=sinA,
即sinBcosC+$\frac{1}{2}$sinC=sin(B+C)=sinBcosC+cosBsinC,
∴cosB=$\frac{1}{2}$,∴B=$\frac{π}{3}$.
(2)由b=$\sqrt{13}$,a+c=4,利用余弦定理可得b2=a2+c2-2ac•cosB=(a+c)2-3ac,
解得 ac=1.
∴S△ABC=$\frac{1}{2}$ac•sinB=$\frac{\sqrt{3}}{4}$.
點評 本題主要考查正弦定理、兩角和差的正弦公式、余弦定理的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 橢圓 | B. | 雙曲線 | C. | 拋物線 | D. | 直線 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com