分析 (Ⅰ)等差數(shù)列{an}的公差設(shè)為d,由等差數(shù)列的通項(xiàng)公式和求和公式,解方程可得首項(xiàng)和公差,即可得到所求通項(xiàng)和前n項(xiàng)和;
(Ⅱ)求出bn=$\frac{1}{S_n}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,運(yùn)用數(shù)列的求和方法:裂項(xiàng)相消求和,可得Tn,再由數(shù)列的單調(diào)性和不等式的性質(zhì),即可得到所求結(jié)論.
解答 解:(Ⅰ)等差數(shù)列{an}的公差設(shè)為d,
a2=4,S6=42,可得a1+d=4,6a1+15d=42,
解得a1=d=2,
則an=2+2(n-1)=2n;Sn=$\frac{1}{2}$n(2+2n)=n(n+1);
(Ⅱ)證明:bn=$\frac{1}{S_n}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
數(shù)列{bn}的前n項(xiàng)和為Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$,
由1-$\frac{1}{n+1}$在n∈N*上遞增,可得Tn≥T1=$\frac{1}{2}$,
且Tn<1.
則$\frac{1}{2}$≤Tn<1.
點(diǎn)評 本題考查等差數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的求和方法:裂項(xiàng)相消求和,考查化簡整理的運(yùn)算能力,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | p1,p2 | B. | p1,p4 | C. | p2,p3 | D. | p3,p4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 12條 | B. | 14條 | C. | 16條 | D. | 18條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {x|-4<x<1或3<x<4} | B. | {-4,-3,-2,-1,0,3,4} | ||
| C. | {x|x<1或3<x<4} | D. | {-3,-2,-1,0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com