欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.已知橢圓T:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,($\sqrt{3}$,$\frac{1}{2}$)為橢圓上的點(diǎn),點(diǎn)P是橢圓T上的任意一點(diǎn),A是橢圓的左頂點(diǎn),F(xiàn)1,F(xiàn)2分別是橢圓的左,右焦點(diǎn),則$\overrightarrow{PA}•\overrightarrow{P{F}_{1}}$+$\overrightarrow{PA}•\overrightarrow{P{F}_{2}}$的最大值是( 。
A.8B.12C.16D.20

分析 通過將點(diǎn)($\sqrt{3}$,$\frac{1}{2}$)代入橢圓方程,結(jié)合離心率為$\frac{\sqrt{3}}{2}$計(jì)算可得橢圓方程,進(jìn)而利用向量數(shù)量積運(yùn)算的坐標(biāo)表示,利用配方法求最值即得結(jié)論.

解答 解:依題意,$\left\{\begin{array}{l}{\frac{{c}^{2}}{{a}^{2}}=\frac{{a}^{2}-^{2}}{{a}^{2}}=\frac{3}{4}}\\{\frac{3}{{a}^{2}}+\frac{1}{4^{2}}=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{{a}^{2}=4}\\{^{2}=1}\end{array}\right.$,
∴橢圓T方程為:$\frac{{x}^{2}}{4}$+y2=1,
則A(-2,0),F(xiàn)1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0),
設(shè)P(x,y),記t=$\overrightarrow{PA}•\overrightarrow{P{F}_{1}}$+$\overrightarrow{PA}•\overrightarrow{P{F}_{2}}$,
則t=(-2-x,-y)•(-$\sqrt{3}$-x,-y)+(-2-x,-y)•($\sqrt{3}$-x,-y)
=(2+x)($\sqrt{3}$+x)+y2+(2+x)(x-$\sqrt{3}$)+y2
=2x(x+2)+2y2
=2x2+4x+2y2
=2x2+4x+2(1-$\frac{{x}^{2}}{4}$)
=$\frac{3}{2}$x2+4x+2
=$\frac{3}{2}$$(x+\frac{4}{3})^{2}$-$\frac{2}{3}$,
又∵-2≤x≤2,
∴當(dāng)x=2時(shí),t取最大值,且tmax=$\frac{3}{2}$•$(2+\frac{4}{3})^{2}$-$\frac{2}{3}$=16,
故選:C.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),涉及橢圓方程,向量數(shù)量積,配方法求最值問題,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}中a1=1,an+1=2an+1(n∈N).求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,先對(duì)曲線C作矩陣A=$[\begin{array}{l}{cosθ}&{-sinθ}\\{sinθ}&{cosθ}\end{array}]$(0<θ<2π)所對(duì)應(yīng)的變換,再將所得曲線作矩陣B=$[\begin{array}{l}{1}&{0}\\{0}&{k}\end{array}]$(0<k<1)所對(duì)應(yīng)的變換,若連續(xù)實(shí)施兩次變換所對(duì)應(yīng)的矩陣為$[\begin{array}{l}{0}&{-1}\\{\frac{1}{2}}&{0}\end{array}]$,求k,θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|,0<x<3}\\{-cos(\frac{π}{3}x),3≤x≤9}\end{array}\right.$,若存在實(shí)數(shù)x1,x2,x3,x4滿足f(xl)=f(x2)=f(x3)=f(x4)=a,則實(shí)數(shù)a的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知等差數(shù)列{an}的首項(xiàng)為a1,公差為d,其前n項(xiàng)和為Sn,若直線y=a1x+m與圓x2+(y-1)2=1的兩個(gè)交點(diǎn)關(guān)于直線x+2y-d=0對(duì)稱,則數(shù)列$\left\{{\frac{1}{S_n}}\right\}$的前100項(xiàng)和=$\frac{100}{101}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,正方形ABCD中,E為DC的中點(diǎn),若$\overrightarrow{AE}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則λ+μ的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在極坐標(biāo)系中,設(shè)曲線ρ=2和ρcosθ=1相交于點(diǎn)A,B,則|AB|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.己知函數(shù)f(x)=|x-2|+a,g(x)=|x+4|,其中a∈R.
(Ⅰ)解不等式f(x)<g(x)+a;
(Ⅱ)任意x∈R,f(x)+g(x)>a2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若log3tanα=-1,則sin2α+cos2α等于( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案