欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知$b=2\sqrt{5}$,$B=\frac{π}{4}$,$cosC=\frac{{2\sqrt{5}}}{5}$.
(Ⅰ)求c的值;
(Ⅱ)求△ABC的面積.

分析 (Ⅰ)在△ABC中,0<C<π,且$cosC=\frac{{2\sqrt{5}}}{5}$,可得sinC=$\sqrt{1-co{s}^{2}C}$.再利用正弦定理可得$\frac{c}{sinC}=\frac{sinB}$,解出即可;
(II)利用余弦定理與三角形的面積計(jì)算公式即可得出.

解答 解:(Ⅰ)在△ABC中,0<C<π,且$cosC=\frac{{2\sqrt{5}}}{5}$,
∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{5}}{5}$.
∵$\frac{c}{sinC}=\frac{sinB}$,且 $b=2\sqrt{5}$,$B=\frac{π}{4}$,
∴$c=\frac{bsinC}{sinB}=\frac{{2\sqrt{5}×\frac{{\sqrt{5}}}{5}}}{{\frac{{\sqrt{2}}}{2}}}=2\sqrt{2}$.
∴$c=2\sqrt{2}$.  
(Ⅱ)∵b2=a2+c2-2accosB,
∴a2-4a-12=0,
∴a=6或a=-2(舍).
∴${S_{△ABC}}=\frac{1}{2}acsinB=6$.

點(diǎn)評(píng) 本題考查了正弦定理、余弦定理、三角形的面積計(jì)算公式、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,已知A(0,0),B(4,3),若A,B,C三點(diǎn)按逆時(shí)針?lè)较蚺帕袠?gòu)成等邊三角形ABC,且直線BC與x軸交于點(diǎn)D.
(1)求cos∠CAD的值;
(2)求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若復(fù)數(shù)z=(m-1)+(m-2)i,(m∈R)是純虛數(shù),復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(0,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=cos2$\frac{ωx}{2}$+$\sqrt{3}$sin$\frac{ωx}{2}$cos$\frac{ωx}{2}$-$\frac{1}{2}$(ω>0)的最小正周期為π.
(Ⅰ)求ω的值及函數(shù)f(x)的最大值和最小值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.復(fù)數(shù)$\frac{3+i}{1+2i}$=1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知a,b,c∈R,那么下列命題中正確的是(  )
A.若a<b,則ac2<bc2B.若a>b>0,c<0,則$\frac{c}{a}<\frac{c}$
C.若a>b,則(a+c)2>(b+c)2D.若ab>0,則$\frac{a}+\frac{a}≥2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知P是直線3x+4y-10=0上的動(dòng)點(diǎn),PA,PB是圓x2+y2-2x+4y+4=0的兩條切線,A,B是切點(diǎn),C是圓心,那么四邊形PACB面積的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{{x}^{2}+4x+1,x≤0}\end{array}\right.$,若關(guān)于x的方程f2(x)-bf(x)+c=0(b,c∈R)有8個(gè)不同的實(shí)數(shù)根,則由點(diǎn)(b,c)確定的平面區(qū)域的面積為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若存在滿足$\frac{1}{x}$+$\frac{m}{y}$=1(m>0)的變量x,y(x,y>0),使得因式x+y-$\sqrt{{x}^{2}+{y}^{2}}$有最大值,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案