欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當(dāng)x∈[-3,-1)時(shí),f(x)=-(x+2)2,當(dāng)x∈[-1,3)時(shí),f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)=( 。
A.336B.355C.1676D.2015

分析 直接利用函數(shù)的周期性,求出函數(shù)在一個(gè)周期內(nèi)的和,然后求解即可.

解答 解:定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).可得函數(shù)的周期為:6,
當(dāng)x∈[-3,-1)時(shí),f(x)=-(x+2)2,
當(dāng)x∈[-1,3)時(shí),f(x)=x,f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0,
2015=6×335+5,
f(1)+f(2)+f(3)+…+f(2015)=f(1)+f(2)+f(3)+f(4)+f(5)+335[f(1)+f(2)+…+f(6)]=1+2-1+0-1+335×(1+2-1+0-1+0)=336.
故選:A.

點(diǎn)評(píng) 本題考查數(shù)列與函數(shù)相結(jié)合,函數(shù)的值的求法,函數(shù)的周期性的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)點(diǎn)P在曲線y=x2+1(x≥0)上,點(diǎn)Q在曲線y=$\sqrt{x-1}$(x≥1)上,則|PQ|的最小值為(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{4}$C.$\sqrt{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.曲線y=ln(2x-1)在點(diǎn)(1,0)處的切線方程為2x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知圓錐曲線nx2+y2=1的離心率為2,則實(shí)數(shù)n的值為( 。
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y-m≤0}\\{x≥1}\end{array}\right.$,目標(biāo)函數(shù)z=2x+y的最大值為7,則目標(biāo)函數(shù)取最小值時(shí)的最優(yōu)解為(1,-1),實(shí)數(shù)m的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,平面中兩條直線l1和l2相交于點(diǎn)O,對(duì)于平面上任意一點(diǎn)M,若p,q分別是M到直線l1和l2的距離,則稱有序非負(fù)實(shí)數(shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.
給出下列四個(gè)命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有1個(gè).
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有2個(gè).
③若pq≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個(gè).
④若p=q,則點(diǎn)M的軌跡是一條過(guò)O點(diǎn)的直線.
其中所有正確命題的序號(hào)為①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)y=2x+$\frac{2}{x}$(x<0)的最大值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)1+x5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,則a1+a2+…+a5=31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x,x≥1}\\{\frac{1}{x},0<x<1}\end{array}\right.$,g(x)=af(x)-|x-2|,a∈R.
(Ⅰ)當(dāng)a=0時(shí),若g(x)≤|x-1|+b對(duì)任意x∈(0,+∞)恒成立,求實(shí)數(shù)b的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)y=g(x)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案