欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.如圖,高為3的直三棱柱ABC-A1B1C1中,底面是直角三角形,AC=2,D為A1C1的中點,F(xiàn)在線段AA1上,CF⊥DB1,且A1F=1.
(1)求證:CF⊥平面B1DF;
(2)求平面B1FC與平面AFC所成的銳二面角的余弦值.

分析 (1)根據(jù)線面垂直的判定定理先證明CF⊥B1F即即可證明CF⊥平面B1DF;
(2)根據(jù)二面角的定義先找出二面角的平面角即可求平面B1FC與平面AFC所成的銳二面角的余弦值.

解答 (1)證明:∵直三棱柱ABC-A1B1C1中,底面是直角三角形,D為A1C1的中點,
∴DB1⊥AA1
∵CF⊥DB1,CF∩⊥AA1=F.
∴DB1⊥平面AA1CC1
∴DB1⊥A1B1
則△A1B1C1為等腰直角三角形,
∵直三棱柱ABC-A1B1C1中高為3,AC=2,A1F=1
∴AB=BC=$\sqrt{2}$,AF=2,F(xiàn)B1=$\sqrt{3}$,B1C=$\sqrt{11}$,CF=2$\sqrt{2}$,
滿足B1F2+CF2=B1C2,
即CF⊥B1F,
∵CF⊥DB1,DB1∩B1F=B1,
∴CF⊥平面B1DF;
(2)∵CF⊥平面B1DF,B1F?平面B1DF,DF?平面B1DF,
∴CF⊥B1F,CF⊥DF,
∵DB1⊥平面AA1CC1
∴∠B1FD是平面B1FC與平面AFC所成的銳二面角的平面角,
則B1D=1,DF=$\sqrt{2}$,
則cos∠B1FD=$\frac{DF}{{B}_{1}F}$=$\frac{\sqrt{2}}{\sqrt{3}}$=$\frac{\sqrt{6}}{3}$,
即平面B1FC與平面AFC所成的銳二面角的余弦值為$\frac{\sqrt{6}}{3}$.

點評 本題主要考查空間線面垂直的判斷以及二面角的求解,利用線面垂直的判定定理以及二面角的定義是解決本題的關(guān)鍵.考查學(xué)生的運算和推理能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知F是雙曲線C:x2-y2=2的右焦點,P是C的左支上一點,A(0,2).當(dāng)△APF周長最小時,該三角形的面積為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在8件同類產(chǎn)品中,有5件正品,3件次品,從中任意抽取4件,下列事件中的必然事件是(  )
A.4件都是正品B.至少有一件次品C.4件都是次品D.至少有一件正品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知θ的終邊過點P(-12,5),則cosθ=$-\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知AC平分∠BAD,CE⊥AB于點E,CF⊥AD于點F,且BC=CD.
(1)求證:△CFD≌△CEB;
(2)若AB=21,AD=9.求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆重慶市高三文上適應(yīng)性考試一數(shù)學(xué)試卷(解析版) 題型:填空題

已知非零向量的夾角為60°,且,則____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆重慶市高三文上適應(yīng)性考試一數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)復(fù)數(shù)滿足,則____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.點A(1,1)在直線l:mx+ny=1上,則mn的最大值為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在等差數(shù)列{an}中,a1=3,其前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q,且b2+S2=12,q=$\frac{{S}_{2}}{_{2}}$.
(1)求an與bn
(2)若對于?n∈N*,不等式$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案