(本題滿分13分)
為了保護(hù)環(huán)境,某工廠在政府部門的支持下,進(jìn)行技術(shù)改進(jìn): 把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測算,該處理成本
(萬元)與處理量
(噸)之間的函數(shù)關(guān)系可近似地表示為:
, 且每處理一噸二氧化碳可得價(jià)值為
萬元的某種化工產(chǎn)品.
(Ⅰ)當(dāng)
時(shí),判斷該技術(shù)改進(jìn)能否獲利?如果能獲利,求出最大利潤;如果不能獲利,則國家至少需要補(bǔ)貼多少萬元,該工廠才不虧損?
(Ⅱ) 當(dāng)處理量為多少噸時(shí),每噸的平均處理成本最少.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
, ![]()
(1)當(dāng)
時(shí), 若
有
個零點(diǎn), 求
的取值范圍;
(2)對任意
, 當(dāng)
時(shí)恒有
, 求
的最大值, 并求此時(shí)
的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知函數(shù)
.
(Ⅰ)求函數(shù)
的極大值;
(Ⅱ)若
對滿足
的任意實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍(這里
是自然對數(shù)的底數(shù));
(Ⅲ)求證:對任意正數(shù)
、
、
、
,恒有![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
.(
).
(1)當(dāng)
時(shí),求函數(shù)
的極值;
(2)若對
,有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間和最小值;
(Ⅱ)若函數(shù)
在
上是最小值為
,求
的值;
(Ⅲ)當(dāng)
(其中
="2.718" 28…是自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
為實(shí)常數(shù))。
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)
在區(qū)間
上無極值,求
的取值范圍;
(Ⅲ)已知
且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,(
為常數(shù))
(I)當(dāng)
時(shí),求函數(shù)的單調(diào)區(qū)間;
(II)若函數(shù)
有兩個極值點(diǎn),求實(shí)數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本小題滿分12分)
設(shè)函數(shù)
在
及
時(shí)取得極值.
(Ⅰ)求a、b的值(6分);
(Ⅱ)若對于任意的
,都有
成立,求c的取值范圍(6分)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com