分析 (1)推導(dǎo)出AC⊥BD,AC⊥PD,從而AC⊥平面PBD,由此能證明平面PAC⊥平面PBD.
(2)推導(dǎo)出DE⊥PC,BC⊥DC,BC⊥PD,從而DE⊥平面PBC由此能證明PB⊥平面EFD.
解答 證明:(1)∵在四棱錐P-ABCD中,底面ABCD是正方形,![]()
∴AC⊥BD,
∵側(cè)棱PD⊥底面ABCD,AC?平面ABCD,∴AC⊥PD.
又∵BD∩PD=D,∴AC⊥平面PBD.
又∵AC?平面PAC,
∴由平面與平面垂直的判定定理知,平面PAC⊥平面PBD…(4分)
(2)在△PDC中,由PD=DC,E是PC的中點(diǎn),知DE⊥PC.
由底面ABCD是正方形,知BC⊥DC,
由側(cè)棱PD⊥底面ABCD,BC?底面ABCD,知BC⊥PD,
又DC∩PD=D,故BC⊥平面PCD.而DE?平面PCD,所以DE⊥BC.
由DE⊥PC,DE⊥BC及PC∩BC=C,知DE⊥平面PBC.
又PB?平面PBC,故DE⊥PB.又已知EF⊥PB,且EF∩DE=E,
∴PB⊥平面EFD.…(10分)
點(diǎn)評(píng) 本題考查面面垂直、線面垂直的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 16 | B. | 9 | C. | 4 | D. | 1 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com