分析 (Ⅰ)通過兩點式方程可得直線l的方程,再利用點到直線的距離公式及a2-b2=c2,即得橢圓C的方程;
(II)設直線l的方程與橢圓方程聯(lián)立,利用韋達定理,結合菱形對角線垂直,即$(\overrightarrow{PM}+\overrightarrow{PN})•\overrightarrow{MN}=0$,從而用k表示出m,由此即可確定m的取值范圍.
解答 解:(Ⅰ)根據題意,得直線l的方程為:$\frac{y-0}{b-0}=\frac{x-a}{0-a}$,即bx+ay-ab=0,
∴$\frac{|0+0-ab|}{\sqrt{{a}^{2}+^{2}}}$=$\frac{ab}{\sqrt{{a}^{2}+^{2}}}$=$\frac{2\sqrt{21}}{7}$,
又∵$e=\frac{c}{a}=\frac{1}{2}$,a2-b2=c2,
∴a2=4,b2=3,
∴橢圓C的方程為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)結論:存在滿足題意的點P且m的取值范圍是0<m<$\frac{1}{4}$;
理由如下:
由(Ⅰ)知F2(1,0),故可設l:y=k(x-1),
聯(lián)立直線與橢圓方程,得$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3+4k2)x2-8k2x+4k2-12=0,
設M(x1,y1),N(x2,y2),由韋達定理,可得
x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$,y1+y2=k(x1+x2-2)=-k$\frac{6}{3+4{k}^{2}}$,
∴$\overrightarrow{PM}+\overrightarrow{PN}$=(x1-m,y1)+(x2-m,y2)=(x1+x2-2m,y1+y2),
由于菱形對角線相互垂直,則$(\overrightarrow{PM}+\overrightarrow{PN})•\overrightarrow{MN}=0$,而$\overrightarrow{MN}$=(x2-x1,y2-y1),
∴(x1+x2-2m)(x2-x1)+(y1+y2)(y2-y1)=0,
即k(y2+y1)+x1+x2-2m=0,∴k2(x1+x2-2)+x1+x2-2m=0,
所以-k2$\frac{6}{3+4{k}^{2}}$+$\frac{8{k}^{2}}{3+4{k}^{2}}$-2m=0,
由已知條件可知,k≠0且k∈R,
∴m=$\frac{{k}^{2}}{3+4{k}^{2}}$=$\frac{1}{4+\frac{3}{{k}^{2}}}$,所以0<m<$\frac{1}{4}$,
故存在滿足題意的點P且m的取值范圍是0<m<$\frac{1}{4}$.
點評 本題考查橢圓的標準方程與幾何性質,考查直線與橢圓的位置關系,考查向量知識的運用,考查韋達定理的運用,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com