欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.已知$m=\int_0^2{({2x+1})dx}$,則${({\frac{1}{x}+\sqrt{x}})^m}$的展開式中常數(shù)項為15.

分析 首先計算定積分,求出m,得到二項式,然后求展開式的通項,確定滿足條件的r值,計算常數(shù)項.

解答 解:$m=\int_0^2{({2x+1})dx}$=(x2+x)|${\;}_{0}^{2}$=6,
則($\frac{1}{x}+\sqrt{x}$)6的展開式的通項為${C}_{6}^{r}{x}^{-6+\frac{3r}{2}}$,
當r=4時為常數(shù)項,所以常數(shù)項為${C}_{6}^{4}={C}_{6}^{2}$=15.
故答案為:15.

點評 本題考查了定積分的計算以及二項式定理的運用;熟練掌握二項展開式的通項是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.游樂場推出了一項趣味活動,參加活動者需轉動如圖所示的轉盤兩次,每次轉動后,待轉盤停止轉動時,記錄指針所指區(qū)域中的數(shù),設兩次記錄的數(shù)分別為x,y,獎勵規(guī)則如下:
①若xy≤3,則獎勵玩具一個;②若xy≥8,則獎勵水杯一個;③其余情況獎勵飲料一瓶,假設轉盤質(zhì)地均勻,四個區(qū)域劃分均勻,小亮準備參加此項活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某研究員為研究某兩個變量的相關性,隨機抽取這兩個變量樣本數(shù)據(jù)如下表:
x0.041 4.8410.24
y1.12.12.33.34.3
若依據(jù)表中數(shù)據(jù)畫出散點圖,則樣本點(xi,yi)(i=1,2,3,4,5)都在曲線y=$\sqrt{x}$+1附近波動,但由于某種原因表中一個x值被污損,將方程y=$\sqrt{x}$+1作為回歸方程,則根據(jù)回歸方程y=$\sqrt{x}$+1和表中數(shù)據(jù)可求得被污損數(shù)據(jù)為( 。
A.-4.32B.1.69C.1.96D.4.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某四棱錐的三視圖如圖所示,該四棱錐的體積為( 。
A.17B.22C.8D.22+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某幾何體的三視圖如圖所示,則其體積為( 。
A.$\frac{3π}{4}$B.$\frac{π+2}{4}$C.$\frac{π+1}{2}$D.$\frac{3π+2}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx-mx+m.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0在x∈(0,+∞)上恒成立,求實數(shù)m的取值范圍;
(3)在(2)的條件下,對任意的0<a<b,求證:$\frac{f(b)-f(a)}{b-a}$<$\frac{1}{a(a+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.α,β,γ是三個平面,m,n是兩條直線,下列命題正確的是( 。
A.若α∩β=m,n?α,m⊥n,則α⊥β
B.若α⊥β,α∩β=m,α∩γ=n,則m⊥n
C.若m⊥α,n⊥β,m∥n,則α∥β
D.若m不垂直平面,則m不可能垂直于平面α內(nèi)的無數(shù)條直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若復數(shù)(1-i)(a+i)在復平面內(nèi)對應的點在第二象限,則實數(shù)a的取值范圍為(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在一次抽樣調(diào)査中測得樣本的6組數(shù)據(jù),得到一個變量y關于x的回歸方程模型,其對應的數(shù)值如表
x234567
y3.002.482.081.861.481.10
(Ⅰ)請用相關系數(shù)r加以說明y與x之間存在線性相關關系(當|r|>0.81時,說明y與x之間具有線性相關關系);
(Ⅱ)根據(jù)(I )的判斷結果,建立y關于x的回歸方程并預測當x=9時,對應的y值為多少(b精確到0.01)
附參考公式:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘法估計公式分別為:
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,相關系數(shù)r公式為:r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
參考數(shù)據(jù):$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=47.64,$\sum_{i=1}^{n}{{x}_{i}}^{2}$=139,$\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=4.18,$\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$=1.53.

查看答案和解析>>

同步練習冊答案