欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.如圖,平面PAC⊥平面ABC,點E、F、O分別為線段PA、PB、AC的中點,點G是線段CO的中點,AB=BC=AC=4,PA=PC=2$\sqrt{2}$.求證:
(1)PA⊥平面EBO
(2)FG∥平面EBO.

分析 (1)推導(dǎo)出BO⊥AC,從而BO⊥面PAC,進而BO⊥PA,再求出OE⊥PA,由此能證明PA⊥平面EBO.
(2)連AF交BE于Q,連QO,推導(dǎo)出Q是△PAB的重心,從而FG∥QO,由此能證明FG∥平面EBO.

解答 證明:(1)由題意可知,△PAC為等腰直角三角形,
△ABC為等邊三角形.    …(2分)
因為O為邊AC的中點,所以BO⊥AC,
因為平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,
BO?平面ABC,所以BO⊥面PAC. …(5分)
因為PA?平面PAC,所以BO⊥PA,
在等腰△PAC內(nèi),O、E為所在邊的中點,所以O(shè)E⊥PA,
又BO∩OE=O,所以PA⊥平面EBO,…(8分)
(2)連AF交BE于Q,連QO.
因為E、F、O分別為邊PA、PB、PC的中點,
所以$\frac{AO}{OG}$=2,且Q是△PAB的重心,…(10分)
于是$\frac{AQ}{QF}$=2=$\frac{AO}{OG}$,所以FG∥QO.…(12分)
因為FG?平面EBO,QO?平面EBO,所以FG∥平面EBO.     …(14分)

點評 本題考查線面垂直、線面平行的證明,考查空間中線線、線面、面面間的關(guān)系等基礎(chǔ)知識,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖是一個算法流程圖,則輸出的x的值是( 。
A.9B.10C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{32π}{3}+32$B.$\frac{32π}{3}+16$C.16π+32D.36π+16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示的流程圖的運行結(jié)果是20 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點M在直線x+y+a=0上,過點M引圓x2+y2=2的切線,若切線長的最小值為2$\sqrt{2}$,則實數(shù)a的值為(  )
A.±2$\sqrt{2}$B.±3C.±4D.±2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}+2cosθ\\ y=2sinθ\end{array}\right.$(θ為參數(shù)).
(1)若P是圓C與y軸正半軸的交點,以圓心C為極點,以x軸的正方向為極軸的方向建立極坐標(biāo)系,求過點P的圓C的切線的極坐標(biāo)方程.
(2)直線l經(jīng)過原點O,傾斜角$α=\frac{π}{6}$,設(shè)l與圓C相交于A,B兩點,求點O到A,B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某中學(xué)生物興趣小組在學(xué)校生物園地種植了一批名貴樹苗,為了解樹苗生長情況,從這批樹苗中隨機測量了其中50棵樹苗的高度(單位:厘米),把這些高度列成了如下的頻率分布表:
組別[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)231415124
(1)在這批樹苗中任取一棵,其高度在85厘米以上的概率大約是多少?
(2)這批樹苗的平均高度大約是多少?
(3)為了進一步獲得研究資料,若從[40,50)組中移出一棵樹苗,從[90,100]組中移出兩棵樹苗進行試驗研究,則[40,50)組中的樹苗A和[90,100]組中的樹苗C同時被移出的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知m是實數(shù),命題p:函數(shù)$f(x)={log_2}({x^2}+m)$是定義域為R的偶函數(shù),命題q:函數(shù)g(x)=(m2-2m-2)x是R上的減函數(shù),若p∨q為真命題,p∧q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知拋物線C:x2=2py(p>0)的焦點為F,點P為拋物線C上的一點,點P處的切線與直線y=x平行,且|PF|=3,則拋物線C的方程為(  )
A.x2=4yB.x2=8yC.x2=6yD.x2=16y

查看答案和解析>>

同步練習(xí)冊答案