分析 (Ⅰ)設(shè)等差數(shù)列{an}的公差為d,利用等差中項(xiàng)的性質(zhì)及已知條件“a1+a2+a3=9、a2+a8=18”可得公差,進(jìn)而可得數(shù)列{an}的通項(xiàng);利用“bn+1=Sn+1-Sn”及“b1=2b1-2”,可得公比和首項(xiàng),進(jìn)而可得數(shù)列{bn}的通項(xiàng);
(Ⅱ)利用${c_n}=\frac{a_n}{b_n}$=$\frac{2n-1}{{2}^{n}}$,寫出Tn、$\frac{1}{2}$Tn的表達(dá)式,利用錯(cuò)位相減法及等比數(shù)列的求和公式即得結(jié)論.
解答 解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,
∵a1+a2+a3=9,∴3a2=9,即a2=3,
∵a2+a8=18,∴2a5=18,即a5=9,
∴3d=a5-a2=9-3=6,即d=2,
∴a1=a2-d=3-2=1,
∴an=1+2(n-1)=2n-1;
∵Sn=2bn-2,
∴bn+1=Sn+1-Sn=2bn+1-2bn,
即bn+1=2bn,
又b1=2b1-2,∴b1=2,
∴數(shù)列{bn}是以首項(xiàng)和公比均為2的等比數(shù)列,
∴bn=2•2n-1=2n;
∴數(shù)列{an}和{bn}的通項(xiàng)公式分別為:an=2n-1、bn=2n;
(Ⅱ)由(I)知${c_n}=\frac{a_n}{b_n}$=$\frac{2n-1}{{2}^{n}}$,
∴Tn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+…+$\frac{2n-1}{{2}^{n}}$,
∴$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n}}$+$\frac{2n-1}{{2}^{n+1}}$,
兩式相減,得$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+…+$\frac{2}{{2}^{n}}$-$\frac{2n-1}{{2}^{n}}$
=$\frac{1}{2}$+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{2n-1}{{2}^{n}}$
=$\frac{3}{2}$-$\frac{2n+3}{{2}^{n+1}}$,
∴Tn=3-$\frac{2n+3}{{2}^{n}}$.
點(diǎn)評(píng) 本題考查求數(shù)列的通項(xiàng)及求和,利用錯(cuò)位相減法是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1 | B. | 1 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1:2 | B. | 2:27 | C. | 1:3 | D. | 4:27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①④ | B. | ②③ | C. | ①②④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com