分析 利用輔助角公式sinα+cosα=$\sqrt{2}$sin(α+$\frac{π}{4}$),可求得sin(α+$\frac{π}{4}$),結(jié)合α的范圍,可α+$\frac{π}{4}$∈($\frac{3π}{4}$,$\frac{5π}{4}$),利用同角的三角函數(shù)關(guān)系可求cos(α+$\frac{π}{4}$),tan(α+$\frac{π}{4}$)的值.
解答 解:∵sinα+cosα=$\sqrt{2}$sin(α+$\frac{π}{4}$)=-$\frac{1}{5}$,
∴sin(α+$\frac{π}{4}$)=-$\frac{\sqrt{2}}{10}$,
∵α∈($\frac{π}{2}$,π),
∴α+$\frac{π}{4}$∈($\frac{3π}{4}$,$\frac{5π}{4}$),
∴cos(α+$\frac{π}{4}$)=-$\sqrt{1-si{n}^{2}(α+\frac{π}{4})}$=-$\frac{7\sqrt{2}}{10}$.
∴tan(α+$\frac{π}{4}$)=$\frac{sin(α+\frac{π}{4})}{cos(α+\frac{π}{4})}$=$\frac{1}{7}$.
故答案為:$\frac{1}{7}$.
點(diǎn)評 本題考查同角三角函數(shù)間的基本關(guān)系,考查了計算能力,屬于基礎(chǔ)題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | f(x1)<0,f(x2)<0 | B. | f(x1)<0,f(x2)>0 | C. | f(x1)>0,f(x2)<0 | D. | f(x1)>0,f(x2)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 8 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com