欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+3y-3≥0}\\{3x+y-9≤0}\end{array}}\right.$,則z=ax+y的最大值為2a+3,則a的取值范圍是( 。
A.[-3,1]B.[-1,3]C.[3,+∞)D.(-∞,-1]

分析 本題考查的知識點(diǎn)是簡單線性規(guī)劃的應(yīng)用,我們要先畫出滿足約束條件的平面區(qū)域,然后分析平面區(qū)域里各個(gè)角點(diǎn),進(jìn)一步分目標(biāo)函數(shù)z=ax+y的最大值為a+3,構(gòu)造一個(gè)關(guān)于a的不等式,解不等式即可求出a的范圍.

解答 解:由變量x,y滿足約束條件$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+3y-3≥0}\\{3x+y-9≤0}\end{array}}\right.$,
作出可行域:

∵z=ax+y,A(0,1),∴zA=1;
解方程組$\left\{\begin{array}{l}{x-y+1=0}\\{3x+y-9=0}\end{array}\right.$,得B(2,3),∴zB=2a+3;
C(3,0),∴zC=3a.
∵線性目標(biāo)函數(shù)z=ax+y的最大值為2a+3,
∴$\left\{\begin{array}{l}{2a+3≥3a}\\{2a+3≥1}\end{array}\right.$,解得-1≤a≤3.
故選:B.

點(diǎn)評 在解決線性規(guī)劃的小題時(shí),我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個(gè)角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗(yàn)證,求出最優(yōu)解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖是一個(gè)旋轉(zhuǎn)體的三視圖,其中正視圖,側(cè)視圖都是由半圓和矩形組成,則這個(gè)旋轉(zhuǎn)體的體積是( 。
A.$\frac{8}{3}$πB.$\frac{7}{3}$πC.D.$\frac{5}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)點(diǎn)C(x,y)是平面直角坐標(biāo)系的動點(diǎn),M(2,0),以C為圓心,CM為半徑的圓交y軸于A,B兩點(diǎn),弦AB的長|AB|=4.
(Ⅰ)求點(diǎn)C的軌跡方程;
(Ⅱ)過點(diǎn)F(1,0)作互相垂直的兩條直線l1,l2,分別交曲線C于點(diǎn)P、Q和點(diǎn)K、L.設(shè)線段PQ,KL的中點(diǎn)分別為R、T,求證:直線RT恒過一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知2cosx+sinx=1時(shí),求$\frac{cosx-sinx}{cosx+sinx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)f(x)是定義在(-∞,+∞)上的以2為周期的周期函數(shù)且f(x)為偶函數(shù),在區(qū)間[2,3]上,f(x)=-2(x-3)2+4.
(1)當(dāng)x∈[1,2]時(shí),f(x)的解析式;
(2)若矩形ABCD的兩個(gè)頂點(diǎn)A、B在x軸上,C、D在y=f(x)(0≤x≤2)的圖象上,求這個(gè)矩形面積的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,它的頂點(diǎn)構(gòu)成的四邊形面積為4.過點(diǎn)(m,0)作x2+y2=b2的切線l交橢圓C于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C1:$\frac{{x}^{2}}{2}$+y2=1和圓C2:x2+y2=1,A,B,F(xiàn)分別為橢圓C1左頂點(diǎn)、下頂點(diǎn)和右焦點(diǎn).
(1)點(diǎn)P是曲線C2上位于第二象限的一點(diǎn),若△APF的面積為$\frac{1}{2}$+$\frac{\sqrt{2}}{4}$,求證:AP⊥OP;
(2)點(diǎn)M和N分別是橢圓C1和圓C2上位于y軸右側(cè)的動點(diǎn),且直線BN的斜率是直線BM斜率的2倍,證明直線MN恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=e-x+a,g(x)=|lnx|.若x1,x2滿足f(x)=g(x),則x1•x2的取值范圍是($\frac{1}{e}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.從一個(gè)有紅、橙、黃、綠這四色球的球袋中(每種就一個(gè)),隨機(jī)摸出兩個(gè)球.
(1)隨機(jī)摸出2個(gè)球,設(shè)紅球?yàn)閄,則隨機(jī)變量X的概率分布為
X01
P0.50.5

(2)求恰好摸出兩個(gè)球是紅色和綠色的概率.

查看答案和解析>>

同步練習(xí)冊答案