若點P是以A(-
,0),B(
,0)為焦點,實軸長為2
的雙曲線與圓x2+y2=10的一個交點,則|PA|+|PB|的值為( )
(A)2
(B)4
(C)4
(D)6![]()
科目:高中數(shù)學 來源: 題型:
命題:“若空間兩條直線a,b分別垂直平面α,則a∥b”,學生小夏這樣證明:
設a,b與平面α分別相交于A,B,連接AB,
∵a⊥α,b⊥α,AB⊂α,①
∴a⊥AB,b⊥AB,②
∴a∥b.③
這里的證明有兩個推理,即:
①⇒②和②⇒③,老師認為小夏的推理證明不正確,這兩個推理中不正確的是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知雙曲線
-
=1(a>0,b>0),過其右焦點F且垂直于實軸的直線與雙曲線交于M,N兩點,O為坐標原點.若OM⊥ON,則雙曲線的離心率為( )
(A)
(B)![]()
(C)
(D)![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設圓錐曲線C的兩個焦點分別為F1、F2,若曲線C上存在點P滿足|PF1|∶|F1F2|∶|PF2|=4∶3∶2,則曲線C的離心率等于( )
(A)
或
(B)
或2
(C)
或2 (D)
或![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖所示,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1、OF2的中點分別為B1、B2,且△AB1B2是面積為4的直角三角形.
![]()
(1)求該橢圓的離心率和標準方程;
(2)過B1作直線交橢圓于P、Q兩點,使PB2⊥QB2,求△PB2Q的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖所示,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個點.
![]()
(1)求r的取值范圍;
(2)當四邊形ABCD的面積最大時,求對角線AC、BD的交點P的坐標.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com