分析 (1)連接AO交BC于點E,連接PE,由三角形中心的性質(zhì)可得AO=2OE,從而DO∥PE,得出線面平行;
(2)由平面PBC⊥平面ABC可得PE⊥平面ABC,由DO∥PE可得DO⊥平面ABC,故DO⊥AC,由三角形中心性質(zhì)得AC⊥BO,從而AC⊥平面DOB,得出BD⊥AC.
解答
解:(1)連接AO交BC于點E,連接PE,
∵O為正三角形ABC的中心,∴AO=2EO,
又AD=2DP,∴DO∥PE,
∵DO?平面PBC,PE?平面PBC,
∴DO∥平面PBC.
(2)∵PB=PC,且E為BC中點,∴PE⊥BC,
又平面PBC⊥平面ABC,∴PE⊥平面ABC,
由(1)知,DO∥PE,∴DO⊥平面ABC,
∴DO⊥AC.連接BO,則AC⊥BO,
又DO∩BO=O,DO?平面DOB,BO?平面DOB,
∴AC⊥平面DOB,∵BD?平面DOB,
∴AC⊥BD.
點評 本題考查了線面平行,線面垂直的判定,面面垂直的性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 若m∥α,n∥α,則m∥n | B. | 若m∥α,m∥β,則α∥β | C. | 若m∥n,n⊥α,則m⊥α | D. | 若m∥α,α⊥β,則m⊥β |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com