分析 (1)連結(jié)BD交AC于O,連結(jié)EO,可證EO∥PB,即可證明PB∥平面EAC.
(2)要證明AE⊥平面PCD,只要證明AE?面PAD,且平面PAD⊥平面PDC即可.
(3)由(2)可得直線AC與平面PCD所成的角為∠ACE,可求$正△PAD中,AE=\frac{{\sqrt{3}}}{2}AD$,$AC=\sqrt{3}AD$,又$\sqrt{A{D^2}+C{D^2}}=\sqrt{3}AD$,解得$CD=\sqrt{2}AD$,從而求得$\frac{CD}{AD}=\sqrt{2}$.
解答
解:(1)連結(jié)BD交AC于O,連結(jié)EO,
∵O、E分別為BD、PD的中點(diǎn),
∴EO∥PB,E0?平面EAC,PB?平面EAC,
∴PB∥平面EAC.….(6分)
(2)∵$\left.\begin{array}{l}矩形ABCD⇒CD⊥AD\\ 面PAD∩面ABCD=AD\\ 面ABCD⊥面PAD\end{array}\right\}\left.{\begin{array}{l}{⇒CD⊥面PAD}\\{CD?面PDC}\end{array}}\right\}⇒面PDC⊥面PAD$,CD?面ABCD,正三角形PAD中,E為PD的中點(diǎn),
∴AE⊥PD,
又面PDC∩面PAD=PD,AE?面PAD,
∴AE⊥平面PCD….(10分)
(3)由(2)AE⊥平面PCD,直線AC與平面PCD所成的角為∠ACE.
∴Rt△ACE中,∠ACE=30°,AC=2AE,又$正△PAD中,AE=\frac{{\sqrt{3}}}{2}AD$,
∴$AC=\sqrt{3}AD$,又矩形$ABCD中,AC=\sqrt{A{D^2}+C{D^2}}$,由$\sqrt{A{D^2}+C{D^2}}=\sqrt{3}AD$,
解得$CD=\sqrt{2}AD$,
∴$\frac{CD}{AD}=\sqrt{2}$…..(14分)
點(diǎn)評(píng) 本題主要考查了直線與平面平行的判定,直線與平面垂直的判定,考查了空間想象能力和推論論證能力,屬于基本知識(shí)的考查.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | -1 | C. | 1 | D. | ±1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 300 | B. | 400 | C. | 500 | D. | 600 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 若“p且q”為假,則p,q至少有一個(gè)是假命題 | |
| B. | 命題“?x∈R,x2-x-1<0”的否定是““?x∈R,x2-x-1≥0” | |
| C. | 當(dāng)a<0時(shí),冪函數(shù)y=xa在(0,+∞)上單調(diào)遞減 | |
| D. | “φ=$\frac{π}{2}$”是“y=sin(2x+φ)為偶函數(shù)”的充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 9 | B. | 10 | C. | 11 | D. | 12 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com