分析 先根據(jù)行列式運算公式得到x2-x-m-1<0在[-1,1]上恒小于0,分離參數(shù)得到m>x2-x-1在[-1,1]上恒成立,設(shè)f(x)=x2-x-1求得其最大值,再由恒成立的原理求解即得.
解答 解:∵$|\begin{array}{l}{x}&{1}\\{m+1}&{x-1}\end{array}|$=x(x-1)-(m+1)=x2-x-m-1,
∴x2-x-m-1<0在[-1,1]上恒小于0,
∴m>x2-x-1在[-1,1]上恒成立,
設(shè)f(x)=x2-x-1=(x-$\frac{1}{2}$)2-$\frac{5}{4}$,
∴函數(shù)f(x)[-1,$\frac{1}{2}$]上單調(diào)遞減,在($\frac{1}{2}$,1]上單調(diào)遞增,
∴當x=-1時,函數(shù)f(x)有最大值,即f(-1)=1+1-1=1,
∴m>1,
故m的取值范圍為(1,+∞),
故答案為:(1,+∞)
點評 本題主要考查二次函數(shù)求最值及不等式恒成立問題,恒成立問題往往轉(zhuǎn)化為函數(shù)求最值問題解決.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{5}{13}$ | B. | -$\frac{5}{13}$ | C. | $\frac{12}{13}$ | D. | -$\frac{12}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{\sqrt{15}}{4}$ | B. | $\frac{\sqrt{15}}{4}$ | C. | -$\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com