欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,橢圓C上任意一點到它兩焦點的距離之和為4.
(1)求橢圓C的標準方程;
(2)設(shè)0為原點.點A為圓C上一點,點B的坐標為(t,2),t∈R,且OA⊥OB,判斷直線AB與圓x2+y2=2的位置關(guān)系,并證明.

分析 (1)由橢圓的離心率公式及橢圓的性質(zhì),求出a與b的值,即可確定出橢圓C的方程;
(2)設(shè)出點A,B的坐標分別為(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到$\overrightarrow{OA}•\overrightarrow{OB}$=0,用坐標表示后把t用含有A點的坐標表示,然后分A,B的橫坐標相等和不相等寫出直線AB的方程,然后由圓x2+y2=2的圓心到AB的距離和圓的半徑相等說明直線AB與圓x2+y2=2相切.

解答 解:(1)∵橢圓C上任意一點到它兩焦點的距離之和為4,
∴由橢圓的定義可知,2a=4,
∴a=2,
∵e=$\frac{\sqrt{2}}{2}$,
∴c=$\sqrt{2}$,
∴b=$\sqrt{2}$,
∴C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1.
(2)直線AB與圓x2+y2=2相切.
證明如下:
設(shè)點A,B的坐標分別為(x0,y0),(t,2),其中x0≠0.
∵OA⊥OB,
∴$\overrightarrow{OA}•\overrightarrow{OB}$=0,即tx0+2y0=0,解得t=-$\frac{2{y}_{0}}{{x}_{0}}$.
當x0=t時,y0=-$\frac{{t}^{2}}{2}$,代入橢圓C的方程,得t=±$\sqrt{2}$.
故直線AB的方程為x=±$\sqrt{2}$,圓心O到直線AB的距離d=$\sqrt{2}$.
此時直線AB與圓x2+y2=2相切.
當x0≠t時,直線AB的方程為y-2=$\frac{{y}_{0}-2}{{x}_{0}-t}$(x-t),
即(y0-2)x-(x0-t)y+2x0-ty0=0.
圓心O到直線AB的距離d=$\frac{|2{x}_{0}-t{y}_{0}|}{\sqrt{({y}_{0}-2)^{2}+({x}_{0}-t)^{2}}}$.
又x02+2y02=4,t=-$\frac{2{y}_{0}}{{x}_{0}}$.
故d=$\frac{|\frac{4+{{x}_{0}}^{2}}{{x}_{0}}|}{\sqrt{\frac{{{x}_{0}}^{4}+8{{x}_{0}}^{2}+16}{2{{x}_{0}}^{2}}}}$=$\sqrt{2}$.
此時直線AB與圓x2+y2=2相切.

點評 此題主要考查了直線與圓錐曲線的綜合問題,解決此類問題的必須熟悉曲線的定義和曲線的圖形特征,這也是高考常考的知識點,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.演繹推理“因為對數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=log${\;}_{\frac{1}{3}}$x是對數(shù)函數(shù)(小前提),所以y=log${\;}_{\frac{1}{3}}$x是增函數(shù)(結(jié)論)”所得結(jié)論錯誤的原因是( 。
A.大前提錯B.小前提錯
C.推理形式錯D.大前提和小前提都錯

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3{x}^{2}+1(x>1)}\\{2x-3(x≤1)}\end{array}\right.$,設(shè)計一個求函數(shù)值的算法,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.一緝私艇在島B南50°東相距8($\sqrt{6}-\sqrt{2}$)n mile的A處,發(fā)現(xiàn)一走私船正由島B沿方位角為10°方向以8$\sqrt{2}$n mile/h的速度航行,若緝私艇要在2小時時候追上走私船,求其航速和航向.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知角φ(|φ|<$\frac{π}{2}$)的頂點為原點,終邊經(jīng)過點P(1,-1),點A(x1,y1),B(x2,y2)是函數(shù)f(x)=2sin(ωx+φ)(ω>0)圖象上任意兩點,若|f(x1)-f(x2)|=2時,|x1-x2|的最小值為$\frac{π}{3}$.
(1)求函數(shù)f(x)的解析式;
(2)將f(x)的圖象向左平移$\frac{π}{3}$個單位,再將f(x)的圖象的每個點保持縱坐標不變,橫坐標縮短為原來的$\frac{1}{3}$,得到y(tǒng)=g(x)的圖象,求y=g(x)在[-$\frac{π}{12}$,$\frac{π}{3}$]上的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知α∈(0,π),化簡:$\frac{(1+sinα+cosα)•(cos\frac{α}{2}-sin\frac{α}{2})}{\sqrt{2+2cosα}}$=cosα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在平行四邊形ABCD中,求證:|$\overrightarrow{AC}$|2+|$\overrightarrow{BD}$|2=2(|$\overrightarrow{AB}$|2+|$\overrightarrow{AD}$|2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知曲線C的極坐標方程為ρ2=$\frac{12}{4co{s}^{2}θ+12si{n}^{2}θ}$,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù),t∈R).
(Ⅰ)求直線l和曲線c的普通方程;
(Ⅱ)求曲線C上的點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.水池有兩個相同的進水口和一個出水口,每個口進出水速度如下圖(甲)、(乙)所示,某天0點到6點該水池蓄水量如圖(丙)所以(至少打開一個水口)給出以下4個論斷:
A.0點到3點只進水不出水
B.3點到4點不進水只出水
C.4點到6點不進水也不出水
D.0點到3點不進水只出水
則一定正確的論斷是A.

查看答案和解析>>

同步練習冊答案