欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.命題p:方程x2+mx+1=0有兩個(gè)不等的正實(shí)數(shù)根,
命題q:方程4x2+4(m+2)x+1=0無(wú)實(shí)數(shù)根.若“p且q”為真命題,求m的取值范圍.

分析 求出命題p、q為真時(shí),m的取值范圍,再求交集

解答 解:“p且q”為真命題,
當(dāng)p為真命題時(shí),則$\left\{\begin{array}{l}△={m^2}-4>0\\{x_1}+{x_2}=-m>0\\{x_1}{x_2}=1>0\end{array}\right.$,得m<-2;
當(dāng)q為真命題時(shí),則△=16(m+2)2-16<0,得-3<m<-1,
若“p且q”為真命題,則$\left\{\begin{array}{l}{m<-2}\\{-3<m<-1}\end{array}\right.$⇒-3<m<-2.
∴m的取值范圍為:[-3,-2].

點(diǎn)評(píng) 本題考查了復(fù)合命題真假的應(yīng)用.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知△ABC,$A({1,1}),B({1,3}),C({1+\sqrt{3},2})$,若點(diǎn)(x,y)在三角形內(nèi)部(不包含邊界),則z=-2x+y的取值范圍是( 。
A.$({-\sqrt{3},-1})$B.(-1,1)C.$({-2\sqrt{3},1})$D.$({-1,\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.△ABC中,若4sinA+2cosB=4,$\frac{1}{2}sinB+cosA=\frac{{\sqrt{3}}}{2}$,則角C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若f(x)=$\left\{\begin{array}{l}{x-2,x≥10}\\{f(x+6),x<10}\end{array}\right.$則f(5)的值( 。
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某公司即將推車(chē)一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購(gòu)買(mǎi)該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購(gòu)買(mǎi)意愿的問(wèn)卷調(diào)查,若得分低于60分,說(shuō)明購(gòu)買(mǎi)意愿弱;若得分不低于60分,說(shuō)明購(gòu)買(mǎi)意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購(gòu)買(mǎi)該款手機(jī)與年齡有關(guān)?
購(gòu)買(mǎi)意愿強(qiáng)購(gòu)買(mǎi)意愿弱合計(jì)
20-40歲
大于40歲
合計(jì)
(2)從購(gòu)買(mǎi)意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪(fǎng),求這2人都是年齡大于40歲的概率.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f (x)=lg$\frac{10}{\sqrt{1+4{x}^{2}}-2x}$,則f (2017)+f (-2017)=( 。
A.0B.2C.20D.4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在研究色盲與性別的關(guān)系調(diào)查中,調(diào)查了男性500人,其中有50人患色盲,調(diào)查的500個(gè)女性中10人患色盲,
(1)根據(jù)以上的數(shù)據(jù)建立一個(gè)2*2的列聯(lián)表;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為“性別與患色盲有關(guān)系”?說(shuō)明你的理由.(注:P(K2≥10.828)=0.001)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0).
(1)若橢圓的兩個(gè)焦點(diǎn)與一個(gè)短軸頂點(diǎn)構(gòu)成邊長(zhǎng)為2的正三角形,求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)右焦點(diǎn)(c,0)的直線(xiàn)l與橢圓C交于A、B兩點(diǎn),過(guò)點(diǎn)F作l的垂線(xiàn),交直線(xiàn)x=$\frac{{a}^{2}}{c}$于P點(diǎn),若$\frac{|PF|}{|AB|}$的最小值為$\frac{a}$,試求橢圓C率心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,三內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且$\frac{c-b}{{\sqrt{2}c-a}}=\frac{sinA}{sinB+sinC}$
(I)求角B的大小,
(Ⅱ)設(shè)$\overrightarrow{m}=(sinA+cosA,1),\overrightarrow{n}=(2,cos(\frac{π}{2}-2A))$,求$\overrightarrow{m}•\overrightarrow{n}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案