分析 若函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{a+1}{x},x>1}\\{(-2a-1)x+1,x≤1}\end{array}\right.$是R上的單調(diào)遞減函數(shù),則$\left\{\begin{array}{l}a+1>0\\-2a-1<0\\ a+1≤-2a-1+1\end{array}\right.$,解得答案.
解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{a+1}{x},x>1}\\{(-2a-1)x+1,x≤1}\end{array}\right.$是R上的單調(diào)遞減函數(shù),
∴$\left\{\begin{array}{l}a+1>0\\-2a-1<0\\ a+1≤-2a-1+1\end{array}\right.$,
解得:a∈(-$\frac{1}{2}$,$-\frac{1}{3}$],
故答案為:(-$\frac{1}{2}$,$-\frac{1}{3}$].
點(diǎn)評 本題考查的知識點(diǎn)是分段函數(shù)的單調(diào)性,正確理解分段函數(shù)單調(diào)性的意義是解答的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {-1,0} | B. | {1} | C. | {0} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com