【題目】如圖,在四棱錐
中,平面
平面ABCD,
是等邊三角形,四邊形ABCD是矩形,
,F為棱PA上一點(diǎn),且
,M為AD的中點(diǎn),四棱錐
的體積為
.
![]()
(1)若
,N是PB的中點(diǎn),求證:平面
平面PCD;
(2)在(Ⅰ)的條件,求三棱錐
的體積.
【答案】(1)見解析;
(2)
.
【解析】
(1)由
是AP的中點(diǎn),證得
,又由四邊形
是矩形,證得
,從而證得
面
,再由
,證得
面
,最后利用面面平行的判定定理,即可得到平面
平面
.
(2)連接
,根據(jù)面面垂直的性質(zhì),證得
面
,又由
是
的中點(diǎn),得到
到面
的距離等于
到面
的距離的一半,利用體積公式,即可求解.
(1)因?yàn)?/span>
,所以
是
的中點(diǎn),又因?yàn)?/span>N是PB的中點(diǎn),所以
,
由四邊形
是矩形,得
,故
,
由
,
面
,所以
面![]()
又由
,且
面
,
面
,所以
面
,
又因?yàn)?/span>
面![]()
根據(jù)面面平行的判定定理,可得平面
平面
.
(2)連接
,由
是等邊三角形,得
,
又因?yàn)槊?/span>
面
,面
面
,
面
,
所以
面![]()
因?yàn)?/span>
是
的中點(diǎn),所以
到面
的距離等于
到面
的距離的一半,
設(shè)
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某游戲公司對今年新開發(fā)的一些游戲進(jìn)行評測,為了了解玩家對游戲的體驗(yàn)感,研究人員隨機(jī)調(diào)查了300名玩家,對他們的游戲體驗(yàn)感進(jìn)行測評,并將所得數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中
.
![]()
(1)求這300名玩家測評分?jǐn)?shù)的平均數(shù);
(2)由于該公司近年來生產(chǎn)的游戲體驗(yàn)感較差,公司計(jì)劃聘請3位游戲?qū)<覍τ螒蜻M(jìn)行初測,如果3人中有2人或3人認(rèn)為游戲需要改進(jìn),則公司將回收該款游戲進(jìn)行改進(jìn);若3人中僅1人認(rèn)為游戲需要改進(jìn),則公司將另外聘請2位專家二測,二測時(shí),2人中至少有1人認(rèn)為游戲需要改進(jìn)的話,公司則將對該款游戲進(jìn)行回收改進(jìn).已知該公司每款游戲被每位專家認(rèn)為需要改進(jìn)的概率為
,且每款游戲之間改進(jìn)與否相互獨(dú)立.
(i)對該公司的任意一款游戲進(jìn)行檢測,求該款游戲需要改進(jìn)的概率;
(ii)每款游戲聘請專家測試的費(fèi)用均為300元/人,今年所有游戲的研發(fā)總費(fèi)用為50萬元,現(xiàn)對該公司今年研發(fā)的600款游戲都進(jìn)行檢測,假設(shè)公司的預(yù)算為110萬元,判斷這600款游戲所需的最高費(fèi)用是否超過預(yù)算,并通過計(jì)算說明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東海水晶制品廠去年的年產(chǎn)量為10萬件,每件水晶產(chǎn)品的銷售價(jià)格為100元,固定成本為80元.從今年起,工廠投入100萬元科技成本,并計(jì)劃以后每年比上一年多投入100萬元科技成本.預(yù)計(jì)產(chǎn)量每年遞增1萬件,每件水晶產(chǎn)品的固定成本
與科技成本的投入次數(shù)
的關(guān)系是
=
.若水晶產(chǎn)品的銷售價(jià)格不變,第
次投入后的年利潤為
萬元.①求出
的表達(dá)式;②問從今年算起第幾年利潤最高?最高利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓
上任意一點(diǎn)到其兩個(gè)焦點(diǎn)
,
的距離之和等于
,焦距為2c,圓
,
,
是橢圓的左、右頂點(diǎn),AB是圓O的任意一條直徑,四邊形
面積的最大值為
.
![]()
(1)求橢圓C的方程;
(2)如圖,若直線
與圓O相切,且與橢圓相交于M,N兩點(diǎn),直線
與
平行且與橢圓相切于P(O,P兩點(diǎn)位于
的同側(cè)),求直線
,
距離d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)設(shè)
,曲線
在點(diǎn)
處的切線在
軸上的截距為
,求
的最小值;
(Ⅱ)若
只有一個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
到點(diǎn)
的距離比它到直線
距離小![]()
(Ⅰ)求點(diǎn)
的軌跡
的方程;
(Ⅱ)過點(diǎn)
作互相垂直的兩條直線
,它們與(Ⅰ)中軌跡
分別交于點(diǎn)
及點(diǎn)
,且
分別是線段
的中點(diǎn),求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率
與日產(chǎn)量
(萬件)之間滿足關(guān)系:
(
)已知每生產(chǎn)1萬件合格的儀器可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.(注:次品率=次品數(shù)/生產(chǎn)量)
(1)試將生產(chǎn)這種儀器元件每天的盈利額
(萬元)表示為日產(chǎn)量
(萬件)的函數(shù);
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)E在橢圓
上,以E為圓心的圓與x軸相切于橢圓C的右焦點(diǎn)
,與y軸相交于A,B兩點(diǎn),且
是邊長為2的正三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知圓
,設(shè)圓O上任意一點(diǎn)P處的切線交橢圓C于M、N兩點(diǎn),試判斷以
為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)坐標(biāo),并直接寫出
的值;若不過定點(diǎn),請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com