分析 (1)直接代入,求f(2),f($\frac{1}{x}$);
(2)由二次方程的解法,可得x的值;
(3)由題意可得a2+a-1≤x2+x-1對(duì)一切x∈R恒成立,求得右邊函數(shù)的最小值,再由二次不等式的解法,可得a的取值范圍.
解答 解:(1)∵f(x)=x2+x-1,
∴f(2)=5,f($\frac{1}{x}$)=$\frac{1}{{x}^{2}}$+$\frac{1}{x}$-1;
(2)若f(x)=5,則x2+x-1=5,∴x=-3或2;
(3)f(x)≥f(a)對(duì)一切x∈R恒成立,
即為a2+a-1≤x2+x-1對(duì)一切x∈R恒成立,
由x2+x-1=(x+$\frac{1}{2}$)2-$\frac{5}{4}$≥-$\frac{5}{4}$,
當(dāng)x=-$\frac{1}{2}$時(shí),取得最小值-$\frac{5}{4}$,
即有a2+a-1≤-$\frac{5}{4}$,
即為(a+$\frac{1}{2}$)2≤0,
又(a+$\frac{1}{2}$)2≥0,
即有(a+$\frac{1}{2}$)2=0,
解得a=-$\frac{1}{2}$.
則實(shí)數(shù)a的取值范圍為{-$\frac{1}{2}$}.
點(diǎn)評(píng) 本題考查二次方程和不等式的解法,考查不等式恒成立思想的運(yùn)用,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (2$\sqrt{2}$,2$\sqrt{3}$) | B. | ($\sqrt{2}$,$\sqrt{3}$) | C. | ($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$) | D. | [2$\sqrt{2}$,2$\sqrt{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com