【題目】下列命題中正確的個(gè)數(shù)是( )
①由五個(gè)面圍成的多面體只能是三棱柱;
②由若干個(gè)平面多邊形所圍成的幾何體是多面體;
③僅有一組對(duì)面平行的五面體是棱臺(tái);
④有一面是多邊形,其余各面是三角形的幾何體是棱錐.
A.0B.1C.2D.3
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知直線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,且與直角坐標(biāo)系長(zhǎng)度單位相同的極坐標(biāo)系中,曲線
的極坐標(biāo)方程是
.
(1)求直線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)
.若直
與曲線
相交于兩點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
的極值;
(2)當(dāng)
時(shí),若直線
:
與曲線
沒有公共點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,點(diǎn)
,圓
的圓心為
,半徑為2.
(Ⅰ)若
,直線
經(jīng)過點(diǎn)
交圓
于
、
兩點(diǎn),且
,求直線
的方程;
(Ⅱ)若圓
上存在點(diǎn)
滿足
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
ae2x+(a﹣2) ex﹣x.
(1)討論
的單調(diào)性;
(2)若
有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,底面是邊長(zhǎng)為4的正三角形,
,
底面
,點(diǎn)
分別為
,
的中點(diǎn).
![]()
(1)求證:平面
平面
;
(2)在線段
上是否存在點(diǎn)
,使得直線
與平面
所成的角的正弦值為
?若存在,確定點(diǎn)
的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)當(dāng)
時(shí),函數(shù)
有兩個(gè)極值點(diǎn),求
的取值范圍;
(2)若
在點(diǎn)
處的切線與
軸平行,且函數(shù)
在
時(shí),其圖象上每一點(diǎn)處切線的傾斜角均為銳角,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】舉例說明簡(jiǎn)單隨機(jī)抽樣和分層隨機(jī)抽樣兩種抽樣方法中,無論使用哪種抽樣方法,總體中的每個(gè)個(gè)體被抽到的概率都相等.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com