分析 由條件利用同角三角函數(shù)的基本關(guān)系,兩角和差的三角公式求得cos($\frac{α+β}{2}$)=cos[(α-$\frac{β}{2}$)-($\frac{α}{2}$-β)]的值,再利用二倍角的余弦公式求得cos(α+β)的值.
解答 解:∵$cos({α-\frac{β}{2}})=-\frac{3}{5}$<0,$sin({\frac{α}{2}-β})=\frac{12}{13}$>0,且$\frac{π}{2}<α<π$,$0<β<\frac{π}{2}$,∴α-$\frac{β}{2}$為鈍角,sin(α-$\frac{β}{2}$)=$\sqrt{{1-cos}^{2}(α-\frac{β}{2})}$=$\frac{4}{5}$,
$\frac{α}{2}$-β為銳角,cos($\frac{α}{2}$-β)=$\sqrt{{1-sin}^{2}(\frac{α}{2}-β)}$=$\frac{5}{13}$,
求cos($\frac{α+β}{2}$)=cos[(α-$\frac{β}{2}$)-($\frac{α}{2}$-β)]=cos(α-$\frac{β}{2}$)cos($\frac{α}{2}$-β)+sin(α-$\frac{β}{2}$)sin($\frac{α}{2}$-β)=-$\frac{3}{5}$•$\frac{5}{13}$+$\frac{4}{5}•$$\frac{12}{13}$=$\frac{33}{65}$,
∴cos(α+β)=2${cos}^{2}\frac{α+β}{2}$-1=-$\frac{2047}{4225}$.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和差的三角公式的應用,二倍角的余弦公式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -1 | B. | 1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| x | 1 | 2 | 2 | 3 |
| y | 2 | 4 | 4 | 6 |
| A. | 2 | B. | 3 | C. | 2.1 | D. | 3.1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com