分析 (1)設(shè)橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$,由離心率公式和a,bc的關(guān)系和橢圓的定義,得到方程組,解得a,b,即可得到橢圓方程;
(2)設(shè)直線為y=$\frac{1}{2}x+m$,則由題意得$\left\{\begin{array}{l}{y=\frac{1}{2}x+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,根據(jù)直線與曲線相切得△=0,求得直線.
解答 解:(1)設(shè)橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$,由題意$\left\{\begin{array}{l}{{a}^{2}=^{2}+{c}^{2}}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{2a=4}\end{array}\right.$解得a=2,b=1.
所以橢圓C的標(biāo)準(zhǔn)方程$\frac{{x}^{2}}{4}+{y}^{2}=1$
(2)設(shè)直線為y=$\frac{1}{2}x+m$,則由題意得$\left\{\begin{array}{l}{y=\frac{1}{2}x+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$
得2x2+4mx+4m2-4=0
△=16m2-8(4m2-4)=0
解得m=$±\sqrt{2}$
故直線方程為$y=\frac{1}{2}x±\sqrt{2}$.
點評 本題主要考查橢圓方程的求法,和直線與圓錐曲線的綜合問題,屬于中檔題目.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 相交 | B. | 相離 | C. | 相切 | D. | 由參數(shù)k確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2+i | B. | -2-i | C. | -2+i | D. | 2-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2+i | B. | 2-i | C. | $\frac{10}{3}$+$\frac{5}{3}$i | D. | $\frac{10}{3}$-$\frac{5}{3}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com