欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.已知函數(shù)f(x)=x2+ax-lnx,a∈R
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍
(2)令g(x)=f(x)-x2,是否存在實(shí)數(shù)a,當(dāng)x∈(0,e]時(shí),函數(shù)g(x)的最小值是3?若存在,求出a的值,若不存在,說(shuō)明理由
(3)當(dāng)x∈(0,e]時(shí),求證:e2x2-$\frac{5}{2}$x>(x+1)lnx.

分析 (1)先求出函數(shù)f(x)的導(dǎo)數(shù),得到不等式組,解出a的范圍即可;
(2)假設(shè)存在實(shí)數(shù)a,求出函數(shù)g(x)的導(dǎo)數(shù),通過(guò)討論g(x)的單調(diào)性,求出函數(shù)的最小值,從而求出a的值;
(3)令F(x)=e2x-lnx,令ω(x)=$\frac{lnx}{x}$+$\frac{5}{2}$,通過(guò)討論它們的單調(diào)性得到e2x-lnx>$\frac{lnx}{x}$+$\frac{5}{2}$即可.

解答 解:(1)f′(x)=2x+a-$\frac{1}{x}$=$\frac{{2x}^{2}+ax-1}{x}$≤0在[1,2]上恒成立,
令h(x)=2x2+ax-1,
∴$\left\{\begin{array}{l}{h(1)≤0}\\{h(2)≤0}\end{array}\right.$,解得:a≤-$\frac{7}{2}$;
(2)假設(shè)存在實(shí)數(shù)a,使得g(x)=f(x)-x2=ax-lnx,x∈(0,e]有最小值3,
g′(x)=a-$\frac{1}{x}$=$\frac{ax-1}{x}$,
①0<$\frac{1}{a}$<e,即a>e時(shí),令g′(x)>0,解得:x>$\frac{1}{a}$,令g′(x)<0,解得:0<x<$\frac{1}{a}$,
∴函數(shù)g(x)在(0,$\frac{1}{a}$)遞減,在($\frac{1}{a}$,e]遞增,
∴g(x)min=g($\frac{1}{a}$)=1+lna=3,解得:a=e2,滿(mǎn)足條件;
②$\frac{1}{a}$≥e,即a≤$\frac{1}{e}$時(shí),g′(x)<0,g(x)在(0,e]單調(diào)遞減,
∴g(x)min=g(e)=ae-1=3,解得:a=$\frac{4}{e}$(舍去);
綜上,存在實(shí)數(shù)a=e2,使得x∈(0,e]時(shí),函數(shù)g(x)有最小值3;
(3)令F(x)=e2x-lnx,由(2)得:F(x)min=3,
令ω(x)=$\frac{lnx}{x}$+$\frac{5}{2}$,ω′(x)=$\frac{1-lnx}{{x}^{2}}$,
當(dāng)0<x≤e時(shí),ω′(x)≥0,ω(x)在(0,e]遞增,
故e2x-lnx>$\frac{lnx}{x}$+$\frac{5}{2}$,
即:e2x2-$\frac{5}{2}$x>(x+1)lnx.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,考查二次函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某企業(yè)通過(guò)調(diào)查問(wèn)卷(滿(mǎn)分50分)的形式對(duì)本企業(yè)900名員工的工作滿(mǎn)意度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(16名女員工,14名男員工)的得分,如下表:
47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49
37 35 34 43 46 36 38 40 39 32 48 33 40 34
(1)根據(jù)以上數(shù)據(jù),估計(jì)該企業(yè)得分大于45分的員工人數(shù);
(2)現(xiàn)用計(jì)算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平均得分為“滿(mǎn)意”,否則為“不滿(mǎn)意”,請(qǐng)完成下列表格:
“滿(mǎn)意”的人數(shù)“不滿(mǎn)意”人數(shù)合計(jì)
16
14
合計(jì)30
(3)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿(mǎn)意”有關(guān)?(參考數(shù)據(jù)請(qǐng)看15題中的表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)y=2x3-3x2( 。
A.在x=0處取得極大值0,但無(wú)極小值
B.在x=1處取得極小值-1,但無(wú)極大值
C.在x=0處取得極大值0,在x=1處取得極小值-1
D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若隨機(jī)變量X$~B(\;5\;,\;\frac{1}{3}\;)$,則P(X=2)=(  )
A.${(\frac{1}{3})^2}×{(\frac{2}{3})^3}$B.${(\frac{2}{3})^2}×{(\frac{1}{3})^3}$C.$C_5^2{(\frac{2}{3})^2}×{(\frac{1}{3})^3}$D.$C_5^2{(\frac{1}{3})^2}×{(\frac{2}{3})^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知a∈R,函數(shù)f(x)=(-x2+ax)ex,(x∈R,e為自然對(duì)數(shù)的底數(shù))
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)函數(shù)f(x)是否為R上的單調(diào)函數(shù),若是,求出a的取值范圍;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f(x)=$\frac{x}{{e}^{x}}$,定義f1(x)=f′(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N.經(jīng)計(jì)算f1(x)=$\frac{1-x}{{e}^{x}}$,f2(x)=$\frac{x-2}{{e}^{x}}$,f3(x)=$\frac{3-x}{{e}^{x}}$,…,照此規(guī)律,則f2015(0)=( 。
A.-2015B.2015C.$\frac{2014}{e}$D.-$\frac{2014}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知平面直角坐標(biāo)系xoy中,曲線(xiàn)C1的方程為$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$,(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρ(cosθ-sinθ)+5=0.
(Ⅰ)求曲線(xiàn)C1的普通方程與C2的直角坐標(biāo)系方程;
(Ⅱ)設(shè)P為曲線(xiàn)C1上的任意一點(diǎn),M為C2上的任意一點(diǎn),求|PM|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若${({{x^2}-\frac{1}{ax}})^9}$(a∈R)的展開(kāi)式中x9的系數(shù)是-$\frac{21}{2}$,則$\int_0^a{sinxdx}$的值為(  )
A.1-cos2B.2-cos1C.cos2-1D.1+cos2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖所示,一圓柱內(nèi)挖去一個(gè)圓錐,圓錐的頂點(diǎn)是圓柱底面的圓心,圓錐的底面是圓柱的另一個(gè)底面.圓柱的母線(xiàn)長(zhǎng)為6,底面半徑為2,求該幾何體的表面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案